a2 United States Patent

US009477614B2

10) Patent No.: US 9,477,614 B2

Basmov et al. 45) Date of Patent: *Oct. 25, 2016
(54) SECTOR MAP-BASED RAPID DATA USPC ..o 713/1, 2, 189, 193; 711/112
ENCRYPTION POLICY COMPLIANCE See application file for complete search history.
(71) Applicant: Microsoft Technology Licensing, LL.C, (56) References Cited
Redmond, WA (US)
U.S. PATENT DOCUMENTS
(72) Inventors: Innokentiy Basmov, Redmond, WA 5495533 A 51996 Linchan of al
. - ,495, inehan et al.
(US); Magnus Bo Gustaf Nystrm, 5.897.661 A * 4/1999 Baranovsky GOGF 3/0608
Sammamlsh, WA (US), Alex M. 707/999.202
Semenko, Issaquah, WA (US); Douglas Continued
M. Maclver, Seattle, WA (US); (Continued)
Donghui Li, Redmond, WA (US) FOREIGN PATENT DOCUMENTS
(73) Assignee: Microsoft Technology Licensing, LLC, N 1653422 8/2005
Redmond, WA (US) CN 102646077 8/2012
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
This patent is subject to a terminal dis- “Foreign Office Action”, CN Application No. 201210314748 X,
claimer. Sep. 23, 2014, 14 Pages.
(Continued)
(21) Appl. No.: 14/506,167
(22) Filed: Oct. 3, 2014 Primary Examiner — Abu Sholeman
74) Attorney, Agent, or Firm — Timothy Churna; Dan
Y, AL y
(65) Prior Publication Data Choi; Micky Minhas
US 2015/0033039 Al Jan. 29, 2015 (57) ABSTRACT
Related U.S. Application Data To comply with a policy for a computing device indicating
(63) Continuation of application No. 13/221,629, filed on ~ that data written by the computing device to the storage
Aug. 30, 2011, now Pat. No. 8,874,935. volume after activation of the policy be encrypted, a sector
map is accessed. The sector map identifies one or more
(51) Int.CL sectors of a storage volume and also identifies, for each of
GOGF 11/30 (2006.01) the one or more sectors of the storage volume, a signature of
GOGF 12/14 (2006.01) the content of the sector. In response to a request to read the
(Continued) content of a sector, the content of the sector is returned
without decrypting the content if the sector is one of the one
(52) US. CL or more sectors and the signature of the content of the sector
CPC GO6F 12/1408 (2013.01); GOGF 12/14 matches the signature of the sector identified in the sector
(2013.01); GO6F 21/602 (2013.01); GO6F map. Otherwise, the content of the sector is decrypted and
21/6218 (2013.01) the decrypted content is returned.
(58) Field of Classification Search

CPC oo, GO6F 12/14; GO6F 12/12 24 Claims, 8 Drawing Sheets
300 302 1 310 312 A
\ Storage Volume Memory
Sector Map Sector Map
’Tagl Group (1) ’Tagl Group (1)

| Sector Identifier ‘ Sector Signature |

[Fag] Group (2)

| Sector Identifier ‘ Sector Signature |

W Group (m)

[Sector Identifier | Sector Signature |

‘ Sector Identiﬂer| Sector Signature |

[Fias] Group (2)

‘ Sector Identiﬂer| Sector Signature |

’Tagl Group (m)

[Sector Identifier | Sector Signature |

US 9,477,614 B2

Page 2
(51) Int. CL 7.930,540 B2 4/2011 Ahuja et al.
GO6F 21/60 (2013.01) 7,962,739 B2* 6/2011 Childs GO6F 11/1417
713/1
GO6F 21/62 (2013.01) 7.979,626 B2* 7/2011 ROETS wovvvvrrvrern. GOGF 11/1441
GOG6F 17/00 (2006.01) 711/103
8,046,365 B2* 10/2011 Saito ...oereereer. GOGF 21/6227
, 707/673
(56) References Cited 8,046,533 B2* 10/2011 Kompella GOGF 3/0608
711/112
U.S. PATENT DOCUMENTS 8,085,933 B2* 12/2011 Ferguson ... HO4L 9/0637
. 380/29
5,966,263 A * 10/1999 Freitas ... GI11B %23‘3‘? 8,214,656 Bl 7/2012 Plotkin et al.
8.234.477 B2* 7/2012 Shaath GOGF 12/1466
5,974,503 A * 10/1999 Venkatesh GO6F 11/1076 e a 711/163
348/E5.008
8249257 B2 82012 Brutch et al.
6,016,402 A * 1/2000 Thomas ... Gggli/g/%ﬁg; 8321,688 B2 11/2012 Auradkar et al.
: 8341.427 B2 122012 Auradkar et al.
6,028,725 A * 22000 Blumenau GOOF gg%ﬁig 8341430 B2 12/2012 Ureche et al.
8387109 B2* 2/2013 Ureche GOGF 21/6218
6,041,386 A * 3/2000 Bello oo, G06F731/10/?(1); 207/694
8,411,863 B2 4/2013 Ureche et al.
6,067,199 A * 52000 Blumenau GOﬁF}ggo/gé 8416954 Bl 4/2013 Raizen et al.
8,417,973 B2* 4/2013 COOPEr «rocorrerereren GOGF 1/3221
6,076,143 A * 6/2000 Blumenau ... G067Fl31//(m U111
8,423,792 B2 42013 Luciani et al.
6,134,062 A * 10/2000 Blumenau GO6F 3/061 8,458,490 B2 6/2013 Konetski et al.
151665 A * 112000 Blumena Gosp s 8,527,561 BL* 9/2013 Moody, II GOGF 17/30182
151,665 A * 11/2000 Blumenaw 707/322
707/999.202 -
8,538,919 B1* 9/2013 Nielsen ... GOGF 9/5077
6,170,037 BL* 1/2001 Blumenau G06F3260/?; 380/277
6,170,055 BL* 1/2001 Meyer ..o GOGF 9/4406 8,349,271 BLT 102013 Joshi oo GOGE 62
7132 .
6,253,300 BL* 6/2001 Lawrence ... GOGF 3/0611 8,583,879 B2* 1U2013 Na oo G06F731/10/?B
71U/112
8,588,422 B2 11/2013 Beachem et al.
6,292,317 Bl1* 9/2001 Alexander B82Y 10/00 8,625,802 B2 1/2014 Parann-lesany
6299790 Bl 972001 Keahn et al 360/31 8,661,193 BL* 22014 CObOS wvvvccrrrrorernreces G11B 20/10
292, : 711/100
6,665,784 B2* 12/2003 Ihde ..ovovvncns Glg]zgz/?/zfég 8,667,213 B2* 3/2014 ROZEIS wrrrorererrne. GOGF 12/0292
: 711/103
6,727,896 B2* 4/2004 Tsang ... GO?I;;/IO;(IS 8,689,279 B2* 4/2014 Basmov GOGF 21/6218
— : 365/120
0T8T B, g I;j}fgjj}: Al eF 30613 8726407 B2* 5/2014 Etchegoyen ... GOeE 21/57
707/999.001 -
8,769,305 B2 7/2014 Blaisdell
6,944,742 B1* 9/2005 Shoff ... G06F7?/8?(7)§ 8,874,935 B2 10/2014 Basmov et al.
8.875304 B2 10/2014 Celi, Jr. et al.
6,968,973 B2* 11/2005 Uyttendacle GOOF 17/3202815/; 2001/0000265 Al 4/2001 Schreiber et al.
2003/0084298 Al 5/2003 Messerges et al.
6,996,696 B2* 2/2006 Shoff GO6F 3/0608 2003/0196114 Al 10/2003 Brew et al.
356662 B2* 42008 Shoff GooE SosT0 2003/0221095 AL* 11/2003 Gaunt ... GOGF 11/1417
356,662 B2* 4/2008 Shoff .oocovvvvivrinren 713/1
711/170
7360,073 BL* 4/2008 Billstrom GOGF 21/575 2004/0090811 AL™ 52004 Kang ..o G“;g;}{ig
713/1
2004/0174345 AL* /2004 TSANG coooreorrerrernn, GOGF 3/0418
7380,140 B1* 52008 Weissman GO6F 21/575 Sang 345/173
380883 B2 62008 Cross ef al 709/213 2005/0071280 Al 3/2005 Irwin et al.
780883 B2, Q008 Crossetal GOGE LL/1004 2005/0097341 Al 5/2005 Francis et al.
A09,623 B2* 8/2008 Baker ... e 2005/0213377 AL* 9/2005 ShOMF woveereeroern, GOGF 3/0608
365/185.2
7451484 Bl 11/2008 Nadalin et al. -
ASL, : 2005/0262361 Al 11/2005 Thibadeau
7,536,536 BL* 52009 Joshi oo G06F751§/36/f 2005/0265074 AL* 12/2005 ShOFE .oereereern, GOGF 3/0608
365/185.08
;’ggg’g% g% ;gggg %;53?13 211' 2005/0283730 Al* 12/2005 Usttendaele GO6F 17/30855
380, ; : 715/720
7,594,087 B2* - 9/2009 Zeevi .o, GOGF 12/0246 2006/0101027 AL* 5/2006 HotchKiss GO6Q 99/00
7646380 B2* 12010 Trang GosE oAt 2006/0155919 AL* 7/2006 Lasser GLIC 11/5621
646,380 B2* /2010 Tsangcoocvevvevren 711/103
178/18.02
. 2006/0190984 Al 82006 Heard et al.
7O B, 20N Wit elal GOGF 12/0292 2006/0206507 Al* 9/2006 Dahbour GOGF 17/30604
s OBOLS vvvvvvsves 711/103 2006/0277590 Al 12/2006 Limont et al.
2725703 B2 52010 Hunter ef al 2006/0279556 A1* 12/2006 TSaNg wervvrrrrerrerer.n GOGF 3/0418
7757,100 B2* 7/2010 Weissman GOGF 21/575 345173
709213 2007/0028231 Al 2/2007 Kelso et al.
7849254 B2* 122010 Ash oo GOGF 11/2089 2007/0058806 Al* 3/2007 Ferguson HO4L 9/0637
711/103 _ 380/42
7,890,664 B1* 2/2011 Taoccccooemnnn. GOGF 9/4411 2007/0150886 Al 6/2007 Shapiro
710/15 2007/0244940 Al 10/2007 Devarakonda et al.
7.903,549 B2 3/2011 Judge et al. 2007/0250678 A1* 10/2007 Ueoka woovvrvrerrer... GOGF 3/0605

US 9,477,614 B2

Page 3
(56) References Cited 2012/0173882 Al* 7/2012 HOM woovveevevererneen. GO6F 21/78
713/189
U.S. PATENT DOCUMENTS 2012/0239618 Al 9/2012 Kung
2012/0297190 Al 11/2012 Shen et al.
711/170 2012/0331550 Al 12/2012 Raj et al.
2007/0300008 AL* 12/2007 ROZerS ...co......... GO6F 12/0292 2013/0013856 AL™ 1/2013 Rogers GOGF 12/0292
711/103 711/103
2007/0300037 AL* 12/2007 ROZerS ...ccooo....... GO6F 12/0292 2013/0054977 Al1* 2/2013 Basmov GOGF 21/6218
711/202 713/189
2008/0002830 Al 1/2008 Cherkasov ef al. 2013/0054979 Al* 2/2013 Basmov ... GOGF 21/602
2008/0005467 Al* 1/2008 Morleyccoooo...... GOGF 3/0613 o 713/193
7L1/113 2013/0067242 Al 3/2013 Lyakhovitskiy et al.
2008/0082448 Al 4/2008 Meijer ef al. 2013/0074142 Al 3/2013 Brennan et al.
2008/0083036 Al 4/2008 Ozzie et al. 2013/0086691 Al 4/2013 Fielder
2008/0107262 Al 5/2008 Helfman et al. 2013/0117561 Al 5/2013 Chawla et al.
2008/0130156 Al* 6/2008 Chu . GI1B20/18 2013/0117805 A1 52013 Kent et al.
360/71 2013/0138971 Al* 52013 Budkoccooom...... GO6F 21/53
2008/0141040 Al 6/2008 Biddle et al. 713/189
2008/0155316 ALl* 6/2008 Pawar GO6F 11/1076 2013/0198474 A1* 8/2013 Shaath GOGF 12/1466
714/6.13 _ 711/163
2008/0168315 Al* 7/2008 Mead ... GO1R 33/1207 2013/0208893 Al 82013 Shablygin et al.
714/49 2013/0291055 Al 10/2013 Muppidi et al.
2008/0229428 AL* 9/2008 Camiel GOGF 17/30082 2013/0318359 Al 11/2013 Morris et al.
726/27 2014/0007182 Al 1/2014 Qureshi et al.
2008/0240441 Al 10/2008 Kawakami 2014/0007222 Al 1/2014 Qureshi et al.
2008/0263371 Al* 10/2008 Weissman GO6F 21/575 2014/0019753 Al 1/2014 Lowry et al.
713/193 2014/0032691 Al 1/2014 Barton et al.
2008/0301470 Al 12/2008 Green et al. 2014/0032759 Al 1/2014 Barton et al.
2009/0024795 Al* 1/2009 Kobara ... GOG6F 12/0864 2014/0032933 Al 1/2014 Smith et al.
L1118 2014/0059690 Al 2/2014 Li et al.
2009/0063756 AL* 3/2009 ASIPOV ..ocoovvvrrrnnn. GO6F 21/10 2014/0081980 Al ~ 3/2014 Aad
711103 2014/0156705 Al* 6/2014 Beecham GO6F 21/6218
2009/0075630 Al 3/2009 Mclean 707/783
2009/0132474 Al* 5/2009 Ma """"""""""""" G06F 17/30451 2014/0156706 Al* 6/2014 Beecha.m G06F 21/6218
2009/0205012 Al 82009 Jain et al. 707/783
2009/0210267 Al 8/2009 Fish et al. 2014/0164774 Al 6/2014 Nord et al.
2009/0287874 Al* 11/2009 ROEEIS GO6F 11/1441 2014/0181512 Al 6/2014 Spalka et al.
711/103 2014/0230007 Al 8/2014 Roth et al.
2009/0307563 Al* 12/2009 Marquez GI11B 20/1883 2014/0259117 Al 9/2014 Wachendorf et al.
714/769 2014/0344570 Al 112014 Adam et al.
2010/0100721 Al 4/2010 Su et al. 2014/0344571 Al 11/2014 Adam__e_t al.
2010/0107213 Al* 4/2010 Ureche ...o......... GO6F 21/6218 2015/0186657 Al 7/2015 Nakhjiri
776/1 2015/0270956 Al 9/2015 Basmov et al.
2010/0169948 AL* 7/2010 Budkocccooovcre. GOGF 21/53 2015/0278531 Al 10/2015 Smith et al.
726/1 2016/0072796 Al 3/2016 Adam et al.
2010/0250847 Al* 9/2010 Chen .oocoovrveen.. GO6F 11/2094 2016/0080149 Al 3/2016 Mehta et al.
711/114 2016/0127327 Al 5/2016 Mehta
2010/0266132 Al 10/2010 Bablani et al.
2010/0299152 A1 11/2010 Batchu et al. FORFEIGN PATENT DOCUMENTS
2010/0306175 Al 12/2010 Johnson et al.
2010/0332725 Al* 12/2010 Postccooveerrrenne. GO6F 12/126 CN 103092664 5/2013
711/103 CN 103092938 5/2013
2011/0010560 Al* 1/2011 Etchegoyen GO6F 11/2025 CN 103500116 1/2014
713/189 CN 103577567 2/2014
2011/0035577 Al 2/2011 Lin et al. EP 2393033 122011
2011/0055559 Al 3/2011 Li et al. EP 2448303 52012
2011/0060915 Al* 3/2011 Tal ..o 713/189 EP 2509275 10/2012
2011/0078760 Al* 3/2011 De Perthuis GO6F 21/6218 EP 2562675 2/2013
726/1 EP 2680487 1/2014
2011/0087890 Al 4/2011 Munsil et al. T™W 200519595 6/2005
2011/0154023 Al 6/2011 Smith et al. W 200723093 6/2007
2011/0202916 Al 82011 VoBa et al. W 201032559 9/2010
2011/0246785 Al 10/2011 Linsley et al. W 1540453 7/2016
2011/0247047 Al* 10/2011 Loureiro HO4L 63/10 WO WO-0049488 8/2000
726/1 WO W0-2004034184 4/2004
2011/0252232 A1 10/2011 De Atley et al. WO WO-2004107646 12/2004
2011/0264925 Al 10/2011 Russo et al. WO WO0-2009069043 6/2009
2011/0276683 Al 11/2011 Goldschlag et al. WO W0-2012016091 2/2012
2011/0277013 Al 11/2011 Chinta WO WO0-2012167392 12/2012
2012/0017095 Al 1/2012 Blenkhorn et al.
2012/0036347 Al 2/2012 Swanson et al.
2012/0036370 AL* 2/2012 Lim oovvecccrrrmmnnreee, HO4L 9/0822 OTHER PUBLICATIONS
713/189
2012/0079603 Al 3/2012 Brown et al. “BitLocker Drive Encryption in Windows Vista”, Microsoft
2012/0087033 A1* 4/2012 Yang .cocccouvveann. G11B 5/012 TechNet, retrieved from <http://technet.microsoft.com/en-us/li-
360/39 brary/cc725719(WS.10).aspx> on Apr. 25, 2011,Aug. 6, 2010, 9
2012/0110345 Al 5/2012 Pigeon et al. pages.
2012/0159148 Al* 6/2012 Behren ... GO6Q 20/3552 “Final Office Action”, U.S. Appl. No. 13/221,629, Dec. 23, 2013, 24
713/150 pages.

US 9,477,614 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

“International Search Report and Written Opinion”, Application No.
PCT/US2011/055600, Jul. 30, 2012, 9 pages.

“International Search Report and Written Opinion”, Application No.
PCT/US2011/055626, Sep. 19, 2012, 9 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/221,629, May 17,
2013, 27 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/221,699, Apr. 1,
2013, 16 pages.

“Notice of Allowance”, U.S. Appl. No. 13/221,629, Jun. 27, 2014,
16 pages.

“Notice of Allowance”, U.S. Appl. No. 13/221,699, Oct. 30, 2013,
9 pages.

“Security Solutions and Services”, retrieved from <http://www.csc.
com/public__sector/offerings/11043/17449-
securitysolutionsandservices> on Apr. 25, 2011, 2 pages.

“Unlock BitLocker under Windows PC”, Retrieved from: <http://
windows7migration.info/index.php option=com__content
&view=article&id=1836:unlock-bitlocker-under-windows-pe
&catid=42:4sysops&Itemid=61> on Aug. 4, 2011, 5 pages.
Lawson, “Meeting Regulatory Compliance Challenges with Data
Management Tools Solutions”, YL & A, www.ylassoc.com, avail-
able at <ftp://public.dhe.ibm.com/software/data/db2imstools/solu-
tions/lawson-reg-compliance.pdf>,Sep. 19, 2006, pp. 1-18.

Li, et al., “Managing Data Retention Policies at Scale”, IFIP/IEEE
International Symposium on Integrated Network Management
2011, Dublin, Ireland, May 23-27, 2011., available at <http://www.
hpl.hp.com/techreports/2010/HPL-2010-203.pdf>Dec. 21, 2010, 9
pages.

Mont, et al., “A Systemic Approach to Privacy Enforcement and
Policy Compliance Checking in Enterprises”, Trusted Systems
Laboratory, HP Laboratories Bristol, HPL.-2006-44, available at
<http://www.hpl.hp.com/techreports/2006/HPL-2006-44 pdf>.
Mar. 16, 2006, 11 pages.

Toegl, et al., “acTvSM: A Dynamic Virtualization Platform for
Enforcement of Application Integrity”, Lecture Notes in Computer
Science vol. 6802, 2011, Retrieved from <https://online.tugraz.at/
tug_ online/voe_ main2.getvolltext?pCurrPk=60165>,2011, 20
pages.

“First Office Action and Search Report Issued in Chinese Patent
Application No. 201210314631.1”, Mailed Date: Dec. 1, 2014, 14
Pages.

“Extended FEuropean Search Report”, EP Application No.
11871440.1, Mar. 16, 2015, 5 pages.

“Extended FEuropean Search Report”, EP Application No.
11871825.3, May 11, 2015, 7 pages.

“Foreign Office Action”, CN Application No. 201210314748 X,
Mar. 17, 2015, 7 pages.

“Search Report”, TW Application No. 100136565, Aug. 3, 2015, 1
pages.

“Non-Final Office Action”, U.S. Appl. No. 14/221,105, Aug. 4,
2015, 25 pages.

“Foreign Notice of Allowance”,
201210314748.X, Jul. 3, 2015, 3 pages.
“Foreign Notice of Allowance”, CN Application No.
201210314631.1, Aug. 20, 2015, 4 pages.

“International Search Report and Written Opinion”, Application No.
PCT/US2015/021125, Jul. 3, 2015, 9 Pages.

“About EFS (Encrypting File System)”, Available at: https://www.
elcomsoft.com/help/en/aefsdr/about__efs.html, Oct. 28, 2014, 3
pages.

“Adobe AIR 1.5 Applications with Flex—Storing Encrypted Data”,
Retrieved From: <http://help.adobe.com/en_ US/AIR/1.5/
devappsflex/WS5b3ccc516d4fbf351e63e3d118666ade46-7e31.
html> May 1, 2015, Oct. 19, 2012, 2 pages.

“Application Encryption-Vormetric Data Security Products”, Avail-
able at: http://www.vormetric.com/products/vormetric-application-
encryption, Jun. 27, 2014, 6 pages.

“Approaches for Encryption of Data at Rest in the Enterprise”, In
White Papers, 2008, 24 pages.

CN Application No.

“Blackberry 107, Retrieved from <http://en.wikipedia.org/wiki/
BlackBerry_ 10#BlackBerry_ Balance> on Apr. 2, 2013, Apr. 1,
2013, 8 pages.

“CheckVision Enterprise Encryption”, Available at: http://assetsl.
csc.com/banking/downloads/CardsPayments__
CheckVisionEnterprise_ DS.pdf, Apr. 24, 2013, 2 pages.
“DataStax Enterprise 3.2”, Available at: http://docs.datastax.com/
en/datastax__enterprise/3.2/datastax__enterprise/sec/secTDE.
html—Retrieved on: Jul. 23, 2015, 2 pages.

“Divide: The Next Generation of Enterprise Mobility”, Retrieved at
<<http://www.divide.com/download/Divide_ Product_ Sheet__
1116.pdf<< on May 8, 2013, Jan. 20, 2013, 2 pages.

“Exchange ActiveSync”, Retrieved from <http://en. wikipedia.org/
wiki/Exchange ActiveSync> on Apr. 1, 2013, 5 pages.
“Exchange ActiveSync: Provisioning Protocol”, Retrieved from
<http://msdn.microsoft.com/en-us/library/dd299443(v=EXCHG.
80).aspx> on Apr. 1, 2013, Dec. 3, 2008, 4 Pages.

“Final Office Action”, U.S. Appl. No. 13/898,368, Apr. 16, 2015, 16
pages.

“How Can We Ensure Data Security on Mobile Devices??”,
Retrieved From: <http://enterprise.huawei.com/topic/byod__en/so-
lution_ byod__info_ 3. html> Mar. 6, 2014, Jun. 16, 2013, 4 Pages.
“How Do I Prevent ‘Sensitive Data Exposure’?”, Retrieved From:
<https://'www.owasp.org/index.php/Top__10_2013-A6-Sensitive__
Data_ Exposure> May 12, 2015, Jun. 23, 2013, 2 pages.
“InnoSetup Help”, Retrieved From: <http://www jrsoftware.org/
ishelp/index.php?topic=filessection> May 12, 2015, 8 pages.
“International Search Report and Written Opinion”, Application No.
PCT/US2013/061053, Jan. 30, 2014, 10 Pages.

“Mobile Device Management”, Retrieved from <http://www.bing.
com/search?q=mobile+device+management&src=IE-TopResult
&FORM=IE10TR> on Apr. 2, 2013, 2 pages.

“MobileIron Introduces the First Complete Mobile App Persona for
the Enterprise”, Retrieved from <http://www.mobileiron.com/en/
company/press-room/press-releases/371- mobileiron-introduces-
the-first-complete-mobile-app-persona-for-the-enterprise> on Mar.
25, 2013, Nov. 6, 2012, 2 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/898,368, Aug. 4,
2015, 17 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/898,368, Dec. 8,
2014, 12 pages.

“OMA Device Management”, Retrieved from <http://en.wikipedia.
org/wiki/OMA__DM> on Apr. 2, 2013, Mar. 25, 2013, 4 Pages.
“OMA Device Management”, Retrieved from <http://msdn.
microsoft.com/en-us/library/bb737369.aspx>, Aug. 4, 2010, 4
Pages.

“Oracle Advanced Security”, Available at: http://www.oracle.com/
technetwork/database/security/ds-advanced-security-tde-psft-
129631.pdf, Apr. 16, 2011, 2 pages.

“Securing end-user mobile devices in the enterprise”, In Proceed-
ings: Thought Leadership White Paper, IBM Global Technology
Services, Apr. 2011, 6 Pages.

“ThoriumCloud Enterprise Container”, Retrieved from <http://
www.thoriumcloud.com/> on Mar. 25, 2013, 4 Pages.
“Transparent Data Encryption (TDE)”, Available at: https://msdn.
microsoft.com/en-in/library/bb934049 .aspx—Retrieved on: Jul. 23,
2015, 11 pages.

“Various Mobile Device Management (MDM) Solutions”,
Retrieved From: <http://www.bing.com/
search?q=mobile+device+management&src=IE-TopResult
&FORM=IE10TR> Mar. 5, 2014, 2 Pages.

“What Android Sync’d Data is Encrypted?”, Retrieved From:
<http://android.stackexchange.com/questions/3129/what-android-
syncd-data-is-encrypted>, Nov. 25, 2010, 3 pages.

“Windows Selective Wipe for Device Data Management”,
Retrieved from <http://technet.microsoft.com/en-us/library/
dn486874.aspx>, Nov. 1, 2013, 4 pages.

Adam,“Enterprise Data Protection: Building Universal Windows
Apps That Keep Work and Personal Data Separate and Secure”,
Available at: https://mix.office.com/watch/fd0jojbqv6qx—Re-
trieved on: Jul. 23, 2015, 20 pages.

US 9,477,614 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Becher,“Mobile Security Catching Up? Revealing the Nuts and
Bolts of the Security of Mobile Devices”, Proceedings of IEEE
Symposium on Security and Privacy, May 22, 2011, pp. 96-111.
Bugiel,“Practical and Lightweight Domain Isolation on Android”,
Proceedings of the 1st ACM Workshop on Security and privacy in
Smartphones and Mobile Devices, Oct. 17, 2011, 12 pages.
Gudeth, Delivering Secure Applications on Commercial Mobile
Devices: The Case for Bare Metal Hypervisors”, Proceedings of the
1st ACM Workshop on Security and privacy in Smartphones and
Mobile Devices, Oct. 17, 2011, pp. 33-38.
Kalogeropoulos,“Oracle Data Pump Encrypted Dump File Sup-
port”, In Oracle White Paper, Jul. 2011, 15 pages.
Lane,“Cracking the Confusion: Encryption Layers”, Available at:
https://securosis.com/blog/cracking-the-confusion-encryption-lay-
ers, Feb. 12, 2015, 2 pages.

Li,“Scalable and Secure Sharing of Personal Health Records in
Cloud Computing Using Attribute-Based Encryption”, IEEE Trans-
actions on Parallel and Distributed Systems, vol. 24, Issue 1, Jan.
2013, pp. 131-143.

Magnabosco, “Transparent Data Encryption”, Available at: https://
www.simple-talk.com/sql/database-administration/transparent-
data-encryption/, Mar. 16, 2010, 19 pages.

Mitchell,"“What is a Selective Wipe?”, Retrieved from <http://www.
landesk.com/blog/what-is-a-selective-wipe/> on Mar. 25, 2013,
Apr. 30, 2012, 1 page.

Oberheide,“When Mobile is Harder Than Fixed (and Vice Versa):
Demystifying Security Challenges in Mobile Environments”, Pro-
ceedings of Eleventh International Workshop on Mobile Computing
Systems and Applications, Feb. 22, 2010, 6 pages.
Pecherle,“Data Wiping System with Fully Automated, Hidden and
Remote Destruction Capabilities”, In Journal of WSEAS Transac-
tions on Computers, vol. 9, Issue 9, Available at <http://www.wseas.
us/e-library/transactions/computers/2010/88-110.pdf>, Sep. 2010,
pp. 939-948.

Pisko,“Trusted Computing in Mobile Platforms—Players, Usage
Scenarios, and Interests”, Proceedings of Privacy and Security, Sep.
2005, pp. 526-530.

Purdy,“Thumb Drive”, Retrieved From: <http://lifehacker.com/
5583307 /top-10-usb-thumb-drive-tricks-2010-edition> May 12,
2015, Oct. 7, 2010, 6 pages.

Reardon,“Secure Deletion on Log-structured File Systems”, In
Proceedings: Technical Report, Department of Computer Science,
ETH Zurich Available at: <http://arxiv.org/pdf/1106.0917.pdf>,
Jun. 5, 2011, 11 pages.

Stehle,“Provisioning, Policies, Remote Wipe, and the Allow/Block/
Quarantine list in Exchange ActiveSync”, Retrieved from <http://
msdn.microsoft.com/en-us/library/exchange/hh509085(v=exchg.
140).aspx> on Apr. 1, 2013, 20 pages.

Stockton,“Divide and your Data: Privacy, Sync, Backup, Restore,
Storage and Wipe”, Retrieved from <http://support.divide.com/

entries/20964987-Divide-and-your-data-privacy-sync-backup-re-
store-storage-and-wipe> on Mar. 25, 2013, Feb. 8, 2012, 2 pages.
Wahl,“Oracle Advanced Security Transparent Data Encryption Best
Practices”, In Oracle White Paper, Jul. 2012, 29 pages.

Zeis,“The security of BlackBerry Balance”, Retrieved From:
<http://crackberry.com/security-blackberry-balance> Mar. 6, 2014,
Aug. 2, 2013, 13 pages.

“Final Office Action”, U.S. Appl. No. 14/221,105, Feb. 22, 2016, 35
pages.

“International Preliminary Report on Patentability”, Application
No. PCT/US2013/061053, Nov. 24, 2015, 8 pages.

“Non-Final Office Action”, U.S. Appl. No. 14/533,921, Apr. 19,
2016, 18 pages.

“Foreign Notice of Allowance”, TW Application No. 100136565,
Mar. 25, 2016, 4 pages.

“Notice of Allowance”, U.S. Appl. No. 13/933,928, Apr. 22, 2016,
8 pages.

“Final Office Action”, U.S. Appl. No. 13/898,368, Dec. 2, 2015, 19
pages.

“Foreign Office Action”, TW Application No. 100136564, Oct. 20,
2015, 11 pages.

“International Search Report and Written Opinion”, Application No.
PCT/US2015/049981, Dec. 3, 2015, 11 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/933,928, Oct. 21,
2015, 11 pages.

“Non-Final Office Action”, U.S. Appl. No. 14/489,288, Nov. 6,
2015, 25 pages.

Menezes, “Handbook of Applied Cryptography”, CRC Press LLC,
Jan. 1, 1997, pp. 25-27 & 551-553.

“Foreign Notice of Allowance”, TW Application No. 100136564,
Feb. 25, 2016, 4 pages.

“International Search Report and Written Opinion”, Application No.
PCT/US2015/058707, Jan. 20, 2016, 11 Pages.

“International Search Report and Written Opinion”, Application No.
PCT/US2015/048750, Apr. 11, 2016, 22 pages.

“Second Written Opinion”, Application No. PCT/US2015/021125,
Feb. 2, 2016, 6 pages.

Chen,“Hardware-Assisted Application-Level Access Control”, ISC
’09 Proceedings of the 12th International Conference on Informa-
tion Security, Sep. 7, 2009, 16 pages.

Final Office Action, U.S. Appl. No. 14/489,288, Jun. 15, 2016, 25
pages.

Non-Final Office Action, U.S. Appl. No. 14/481,672, Jul. 28, 2016,
12 pages.

Restriction Requirement, U.S. Appl. No. 14/481,672, Jun. 28, 2016,
6 pages.

Second Written Opinion, Application No. PCT/US2015/049981,
Jul. 26, 2016, 5 pages.

Foreign Office Action, TW Application No. 105101128, Aug. 23,
2016, 5 pages.

Examiner’s Answer to Appeal Brief, U.S. Appl. No. 13/898,368,
Sep. 8, 2016, 7 pages.

* cited by examiner

U.S. Patent Oct. 25, 2016 Sheet 1 of 8 US 9,477,614 B2

100 ~
102 —{. Computing Device) 106
[Encryption/) ()
Decryption Control Policy Module
Module
104 — L— 108

Read/Write Control

Module Sector Map

110

Storage Volume

Fig. 1

U.S. Patent Oct. 25, 2016 Sheet 2 of 8 US 9,477,614 B2

200 ~
Sector Map
202(1) —~ Sector Identifier Sector Signature
202(2) —~ Sector Identifier Sector Signature
202(x) —~| Sector Identifier Sector Signature

Fig. 2

US 9,477,614 B2

Sheet 3 of 8

Oct. 25, 2016

U.S. Patent

alnjeublg 10j08g | Jaynuap| 101088

(w) dnoug

Gel4

ainjeubig 10j08g | Jaynuap| J0j08g

(z) dnoig

Gelq

alnjeublg 10)oag | Jaynusp| J0}08g

(1) dnous

Belq

dej 101088

"SI

aineubig 101093 | Jalyusp| J0108g

A

Aloway /

/rmrm

oLe

(w) dnolg be|4
aJnjeubig 10J08g | Jaynuap| J0}08g
(z) dnoug beld
ainjeubig 10109g | Jalnuap| 10108
(1) dnoig el
dej 10y08g
awn|o/ abeiog /
L AU N 00¢

U.S. Patent Oct. 25, 2016 Sheet 4 of 8 US 9,477,614 B2

400 ~
102 —{. Computing Device) 106
[Encryption/] (]
Decryption Control Policy Module
Module
104 — L— 402
Read/Write Control Encrypted Chunks
Module Map
110 L 404
Storage Volume Conversion Log

Fig. 4

U.S. Patent Oct. 25, 2016 Sheet 5 of 8 US 9,477,614 B2

N
o
[aw}

[502
Receive A Request To Activate A Policy For
A Computing Device, The Policy Indicating
That Data Written To A Storage Volume
After Activation Of The Policy Be Encrypted

¢ 50
Activate The Policy For The Computing

Device In Response To The Request,
Encrypting Data Written To The Storage
Volume

¢ 506

Return An Indication Of Compliance With
The Policy Despite One Or More Sectors Of
The Storage Volume Being Unencrypted

Fig. 5

U.S. Patent Oct. 25, 2016 Sheet 6 of 8 US 9,477,614 B2

600
602
[Access A Sector Map Of A Storage Volume]
To Comply With A Policy Indicating That
Data Written To The Storage Volume After
Activation Of The Policy Be Encrypted
' v w 604
Receive A Request To Read The Content Of
A Sector Of The Storage Volume
606
No Sgctor
Identified In The
Sector Map?
608
Signature
Of The Content Matches Yes
Signature In The Sector
Map?
671 2 ~ v \ v 610
Decrypt Content Of The Return Content Of The
Sector Sector Without Decrypting
614 ~ v

’~ ™)

Return Decrypted Content
Of The Sector

Fig. 6

U.S. Patent Oct. 25, 2016 Sheet 7 of 8 US 9,477,614 B2

700
702
[Access An Encrypted Chunks Map Of A Storage]
Volume To Comply With A Policy Indicating That
Data Written To The Storage Volume After
| Activation Of The Policy Be Encrypted
, v 704
Identify A Chunk That Includes A Sector To
Which Data Is Requested To Be Written
Y
Chunk
Unencrypted?
7'08 ~ ¥ \ ' v 71\2
Encrypt The Data To Be Hold The Write Request
Written
\ v 714
710 ~ ¥ - ~
() Encrypt The Sectors In
Write The Encrypted Data The Chunk
To The Sector Of The \
Storage Volume 716
\ 4

Update The Encrypted

Chunks Map In Memory

And Persist On Storage
Volume

718

4

Cease Holding The Write
Request

Fig.7 I

~

U.S. Patent Oct. 25, 2016 Sheet 8 of 8 US 9,477,614 B2

804
800 i a
Computer Readable
802 Media — 806
Memory/
[Processor] Storage
\| f
I ¢ —810

< 1)

[I/0 Device

US 9,477,614 B2

1
SECTOR MAP-BASED RAPID DATA
ENCRYPTION POLICY COMPLIANCE

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/221,629, filed Aug. 30, 2011, entitled
“Sector Map-based Rapid Data Encryption Policy Compli-
ance” to Innokentiy Basmov, et al., the entire disclosure of
which is hereby incorporated by reference herein in its
entirety.

BACKGROUND

Computers can be used in various settings, sometimes
adhering to particular policies. For example, when accessing
corporate data such as email from a personal computer,
corporate policy may dictate that the personal computer
must encrypt corporate data stored on the personal comput-
er’s storage device in order to grant access to the corporate
data. The computer may be unable to access the particular
corporate service until the policy is complied with, but
waiting for a storage device to be encrypted (which can be
on the order of several minutes or hours, depending on the
size of the storage device) in order to use the corporate
service can be frustrating for users.

SUMMARY

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

In accordance with one or more aspects, a request to
activate a policy for a computing device is received at the
computing device. The policy indicates that data written by
the computing device to a storage volume after activation of
the policy be encrypted. In response to the request, the
policy is activated for the device, including encrypting data
written to the storage volume after returning the indication
of compliance with the policy, and using a sector map to
identify one or more sectors of the storage volume that are
not encrypted. Additionally, in response to the request, an
indication of compliance with the policy is returned despite
one or more sectors of the storage volume being unen-
crypted.

In accordance with one or more aspects, to comply with
a policy for a computing device indicating that data written
by the computing device to the storage volume after acti-
vation of the policy be encrypted, a sector map is accessed.
The sector map identifies one or more sectors of a storage
volume and also identifies, for each of the one or more
sectors of the storage volume, a signature of the content of
the sector. In response to a request to read the content of a
sector, the content of the sector is returned without decrypt-
ing the content if the sector is one of the one or more sectors
identified in the storage map and the signature of the content
of the sector matches the signature of the sector identified in
the sector map. Otherwise, the content of the sector is
decrypted and the decrypted content is returned.

BRIEF DESCRIPTION OF THE DRAWINGS

The same numbers are used throughout the drawings to
reference like features.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 is a block diagram illustrating an example com-
puting device implementing rapid compliance with a data
encryption policy in accordance with one or more embodi-
ments.

FIG. 2 illustrates an example sector map in accordance
with one or more embodiments.

FIG. 3 illustrates an example of sector maps maintained
in memory and persisted on a storage device in accordance
with one or more embodiments.

FIG. 4 is a block diagram illustrating another example
computing device implementing rapid compliance with a
data encryption policy in accordance with one or more
embodiments.

FIG. 5 is a flowchart illustrating an example process for
implementing rapid compliance with a data encryption
policy in accordance with one or more embodiments.

FIG. 6 is a flowchart illustrating another example process
for implementing rapid compliance with a data encryption
policy using a sector map in accordance with one or more
embodiments.

FIG. 7 is a flowchart illustrating an example process for
implementing rapid compliance with a data encryption
policy using an encrypted chunks map in accordance with
one or more embodiments.

FIG. 8 illustrates an example computing device that can
be configured to implement rapid compliance with a data
encryption policy in accordance with one or more embodi-
ments.

DETAILED DESCRIPTION

Rapid compliance with a data encryption policy is dis-
cussed herein. A sector map for a storage volume used by a
computing device can be generated, the sector map identi-
fying one or more sectors of a storage volume as well as a
signature of the content of each of the one or more sectors.
The sector map can be generated shortly after (or as part of)
installing an operating system on the computing device, or
alternatively at a later time prior to activating a policy for the
computing device. The policy activated for the computing
device indicates that content written by the computing
device to the storage volume after activation of the policy be
encrypted. After activation of the policy, the computing
device encrypts content written to sectors of the storage
volume. Additionally, after activation of the policy, content
in a particular sector may or may not be encrypted. The
sector map is used to identify which sectors of the storage
volume have encrypted content, and thus which content is to
be decrypted before being returned to the requester.

Alternatively, an encrypted chunks map for a storage
volume used by a computing device can be generated, the
encrypted chunks map identifying chunks of sectors of the
storage volume. For each chunk of sectors of the storage
volume, the encrypted chunks map indicates whether the
sectors in the chunk are encrypted (or not in use) or are
unencrypted. After activation of a policy for the computing
device indicating that content written by the computing
device to the storage volume after activation of the policy is
encrypted, data written to the storage volume is encrypted.
If data is written to a chunk that is unencrypted (as deter-
mined by the encrypted chunks map), then the sectors in the
chunk are encrypted, the data is encrypted and written to the
sector, and the encrypted chunks map is updated to indicate
that the chunk is encrypted. Whether data read from the
storage volume is decrypted is determined based on whether
the sector from which the data is read is unencrypted (as
determined by the encrypted chunks map).

US 9,477,614 B2

3

References are made herein to cryptography, which can
include symmetric key cryptography, public key cryptogra-
phy and public/private key pairs. Although such key cryp-
tography is well-known to those skilled in the art, a brief
overview of such cryptography is included here to assist the
reader. In public key cryptography, an entity (such as a user,
hardware or software component, a device, a domain, and so
forth) has a key (a public key and/or a private key). The
public key of a public/private key pair can be made publicly
available, but the private key is kept a secret. Without the
private key it is computationally very difficult to decrypt
data that is encrypted using the public key. Using some
public key cryptography algorithms, data can be encrypted
by any entity with the public key and only decrypted by an
entity with the corresponding private key. Additionally,
using some public key cryptography algorithms, a digital
signature for data can be generated by using the data and the
private key. Without the private key it is computationally
very difficult to create a signature that can be verified using
the public key. Any entity with the public key can use the
public key to verify the digital signature by executing a
suitable digital signature verification algorithm on the public
key, the signature, and the data that was signed.

In symmetric key cryptography, on the other hand, a
shared key (also referred to as a symmetric key) is known by
and kept secret by the two entities. Any entity having the
shared key is typically able to decrypt data encrypted with
that shared key. Without the shared key it is computationally
very difficult to decrypt data that is encrypted with the
shared key. So, if two entities both know the shared key,
each can encrypt data that can be decrypted by the other, but
other entities cannot decrypt the data if the other entities do
not know the shared key. Similarly, an entity with a shared
key can encrypt data that can be decrypted by that same
entity, but other entities cannot decrypt the data if the other
entities do not know the shared key. Additionally, authenti-
cation codes or message authentication codes can be gen-
erated based on symmetric key cryptography, such as using
a keyed-hash message authentication code mechanism. Any
entity with the shared key can generate and verify the
authentication code or message authentication code. For
example, a trusted third party can generate a symmetric key
based on an identity of a particular entity, and then can both
generate and verify the authentication codes or message
authentication codes for that particular entity (e.g., by
encrypting or decrypting the data using the symmetric key).

FIG. 1 is a block diagram illustrating an example com-
puting device 100 implementing rapid compliance with a
data encryption policy in accordance with one or more
embodiments. Computing device 100 can be a variety of
different types of devices, such as a physical device or a
virtual device. For example, computing device 100 can be a
physical device such as a desktop computer, a server com-
puter, a laptop or netbook computer, a tablet or notepad
computer, a mobile station, an entertainment appliance, a
set-top box communicatively coupled to a display device, a
television or other display device, a cellular or other wireless
phone, a game console, an automotive computer, and so
forth. Computing device 100 can also be a virtual device,
such as a virtual machine running on a physical device. A
virtual machine can be run on any of a variety of different
types of physical devices (e.g., any of the various types
listed above). Thus, computing device 100 may range from
a full resource device with substantial memory and proces-
sor resources (e.g., personal computers, game consoles) to a

25

40

45

50

55

4

low-resource device with limited memory and/or processing
resources (e.g., traditional set-top boxes, hand-held game
consoles).

Computing device 100 includes an encryption/decryption
control module 102, a read/write control module 104, a
policy module 106, a sector map 108, and a storage volume
110. Although particular modules 102, 104, and 106 are
illustrated in computing device 100, it should be noted that
one or more of modules 102, 104, and 106 can be combined
into a single module, or that the functionality of one or more
of modules 102, 104, and/or 106 can be separated into
multiple modules. Encryption/decryption control module
102 manages encryption and decryption of data stored on
storage volume 110 using any of a variety of different
cryptographic techniques (e.g., using symmetric key cryp-
tography and/or public key cryptography). The data stored
on storage volume 110 refers to any information that can be
stored, such as program data, user data, system data, instruc-
tions or code, and so forth.

Encryption/decryption control module 102 typically
allows data to be encrypted and/or decrypted only when
authorized to do so. Module 102 can be authorized to allow
data to be encrypted and/or decrypted in different manners.
For example, module 102 can be authorized to allow data to
be encrypted and/or decrypted only after a user of comput-
ing device 100 has proven that he or she possesses valid
credentials to access the data. Various different credentials
can be used, such as knowledge of a secret phrase (e.g., a
password), a private key corresponding to a certificate, a
temporal secret (e.g., a one-time password), and so forth. By
way of another example, module 102 can be authorized to
allow data to be encrypted and/or decrypted only after
detecting that computing device 100 is in a particular state
(e.g., conforms to a particular policy). By way of yet another
example, module 102 can be authorized to allow data to be
encrypted and/or decrypted only after obtaining particular
encryption and/or decryption keys stored in or by computing
device 100.

Read/write control module 104 manages reading data
from and writing data to storage volume 110. This reading
and writing includes reading and writing of encrypted data
(also referred to as ciphertext) as well as unencrypted data
(also referred to as plaintext). Read/write control module
104 can invoke module 102 to encrypt and/or decrypt data
read and/or written as appropriate.

Policy module 106 implements various policies on com-
puting device 100. Each policy identifies one or more
behaviors that device 100 is to follow, such as types of
programs that are to be running on device 100 (e.g., anti-
malware programs), types of security that are to be imple-
mented by device 100 (e.g., encrypting and decrypting data),
and so forth. In one or more embodiments, a policy can
indicate that once the policy is activated on device 100 (and
optionally until the policy is deactivated), data stored on
storage volume 110 is to be encrypted. Activation of a policy
refers to the policy being enforced on, and complied with by,
computing device 100. Policy module 106 can obtain one or
more policies to implement in various manners, such as
being pre-configured with one or more policies, receiving a
user input (e.g., from an administrative user) of one or more
policies, receiving one or more policies from a remote server
or service, and so forth.

Storage volume 110 is a storage device that can be
implemented using a variety of different technologies, such
as a flash memory device, a magnetic disk, an optical disc,
combinations thereof, and so forth. Storage volume 110 can
also be a portion of a storage device that is treated by

US 9,477,614 B2

5

computing devices and operating systems logically as a
storage device. For example, a storage volume can be a
partition of a hard drive, a portion of a flash memory device,
and so forth.

Storage volume 110 is illustrated as being included as part
of computing device 100. For example, storage volume 110
can be an internal storage device coupled to an internal bus
of device 100, such as using a Serial Advanced Technology
Attachment (SATA) interface, Parallel ATA (PATA) inter-
face, Small Computer System Interface (SCSI) interface,
and so forth. By way of another example, storage volume
can be an internal storage device implemented as one or
more chips on a same circuit board as chips implementing
one or more of modules 102-106, can be an internal storage
device implemented in the same chip as one or more of
modules 102-106, and so forth.

Storage volume 110 can alternatively be external to
computing device 100 and coupled to computing device 100
in a variety of different wired and/or wireless manners. For
example, storage volume 110 can be coupled to computing
device 100 via a Universal Serial Bus (USB) connection, a
wireless USB connection, an IEEE 1394 connection, an
external SATA (eSATA) connection, a Bluetooth connection,
and so forth. Storage volume 110 can be designed to be
coupled to different computing devices (concurrently or at
different times). In one or more embodiments, storage
volume 110 is a removable volume, such as being part of a
storage device designed to be easily coupled to and
decoupled from computing device 100 and transported to
other computing devices. An example of such a removable
storage volume is a thumb drive or USB flash memory
device. Alternatively, storage volume 110 can take other
forms, such as being a network storage device that is
coupled to computing device 100 via a network (e.g., the
Internet, a local area network (LAN), a cellular or other
phone network, an intranet, a storage area network (SAN),
network-attached storage (NAS), other public and/or pro-
prietary networks, combinations thereof, and so forth).

Storage volume 110 includes multiple sectors in which
data can be stored. The data stored in a sector is also referred
to as the content of that sector. Each sector is a portion of
storage volume 110, and different storage volumes can have
different sector sizes (e.g., 512 bytes, 4 k bytes, 8 k bytes,
and so forth). A storage volume typically has sectors of the
same size, but can alternatively have sectors of different
sizes. Sector map 108 identifies one or more sectors of
storage volume 110 as well as a signature of the content of
each of the one or more sectors. The usage of sector map 108
and the signatures of the contents of the sectors are discussed
in more detail below. Although discussed herein as operating
on a per-sector basis, it should be noted that the techniques
discussed herein can alternatively operate based on other
groupings of content on storage volume 110 in an analogous
manner (e.g., based on groupings of multiple sectors or other
collections of content).

Sector map 108 is typically stored on a storage device
(e.g., storage volume 110) and copied into a memory (e.g.,
RAM) of computing device 100 when computing device 100
starts operation (e.g., is powered on, reset, etc.). The
memory is typically a volatile memory that does not main-
tain its state when computing device 100 is powered off, but
that typically has faster access time than storage volume 110.
Alternatively, sector map 108 can be maintained in a non-
volatile memory (e.g., Flash memory) that does maintain its
state when computing device 100 is powered off.

In one or more embodiments, encryption/decryption con-
trol module 102, read/write control module 104, and policy

20

25

30

40

45

55

65

6

module 106 are implemented in an operating system of
computing device 100. In response to activation of a policy
on computing device 100 indicating data is to be encrypted,
data written to storage volume 110 subsequent to activation
of the policy is encrypted regardless of the application or
other program writing the data to storage. Encryption/
decryption control module 102 encrypts data written to
storage volume 110 for multiple applications, rather than
simply a single application.

FIG. 2 illustrates an example sector map 200 in accor-
dance with one or more embodiments. Sector map 200 can
be, for example, sector map 108 of FIG. 1. Sector map 200
includes multiple sector identifiers and corresponding sector
signatures 202(1), . . . 202(x). The sector identifiers in sector
map 200 can take a variety of different forms, such as
numeric identifiers of the sectors.

It should be noted that although multiple sector identifiers
each having a corresponding sector signature are illustrated
in FIG. 2, sector map 200 can alternatively be configured in
different manners. For example, sector map 200 can arrange
sector signatures in groups having a contiguous set or run of
sector identifiers. A single sector identifier (e.g., the sector
identifier at the beginning or start of the run of sector
identifiers) can be included in sector map 200, and then
given the size of the sector signatures a particular sector
signature within that group can be readily identified. For
example, if the sector identifier at the beginning of a group
is sector 732 and sector signatures are 6 bytes in length, then
it can be readily determined that the sector signature for
sector 735 is 3x6=18 bytes offset into the group of sector
signatures. Although only a single sector identifier is
included in sector map 200 for a group, it should be noted
that the sector map is still viewed as identifying the multiple
sectors (and corresponding sector signatures) of the sector
identifiers in the set or run included in that group.

At a particular point in time, sector map 200 is locked.
Sector map 200 being locked refers to sector map 200 being
set or fixed in its current state, with no changes to sector map
200 being allowed. Sector map 200 can be locked in various
manners, such as being stored in a nonvolatile write-once
memory location, being stored in a portion of storage
volume 110 accessible only to an operating system of
computing device 100 and the operating system refusing to
perform any writes to sector map 200, and so forth. Sector
map 200 can be locked at different times (e.g., when an
operating system is installed or a policy is activated), as
discussed in more detail below.

Sector map 200 need not, and typically does not, include
an identifier and corresponding signature for every sector of
the storage volume. Rather, sector map 200 includes iden-
tifiers and corresponding signatures of sectors that were
written to prior to sector map 200 being locked. Alterna-
tively, sector map 200 can include identifiers of multiple
sectors that were not written to prior to sector map 200 being
locked, and also include one or more indications of which
identified sectors were written to prior to sector map 200
being locked (e.g., flag values, include signatures for only
those sectors that were written to prior to sector map 200
being locked, etc.).

The sector signatures in sector map 200 are a represen-
tation of at least part of the content in the sector. Sector
signatures can be generated in a variety of different manners
as a function of the content of the sector. In one or more
embodiments, the signature of a sector is generated by
selecting a particular number of bytes of the content of the
sector (e.g., the content in the first 6 bytes of the sector, the
content in the 8 bytes of the sector starting at the 11 byte

US 9,477,614 B2

7

of'the sector, etc.). Alternatively, the signature of a sector can
be generated in different manners, such as by applying a
variety of different hash algorithms to the content of the
sector to obtain a hash value, applying various other algo-
rithms or rules to the content of the sector to obtain a value
representing the content of the sector, and so forth.

The sector signatures in sector map 200 are used to
identify whether content of the corresponding sector has
changed (which can be used to determine whether the
content is to be decrypted, as discussed in more detail
below) after sector map 200 was locked. At any given time,
a signature of the content of a sector identified in sector map
200 can be generated in the same manner as the signature for
that sector was generated for sector map 200. The signature
from sector map 200 is compared to the generated signature
for the sector, and a determination made as to whether the
two signatures match (e.g., are the same). If the two signa-
tures match, then the content of the corresponding signature
was not changed after sector map 200 was locked. However,
if the two signatures do not match, then the content of the
corresponding signature was changed after sector map 200
was locked.

In one or more embodiments, sector map 200 is main-
tained in memory or on a storage device in a manner that
facilitates quick access to the content of sector map 200. For
example, sector map 200 can be maintained on the storage
device in a group of contiguous sectors of the storage device,
in a group of contiguous addresses in memory, and so forth.
The content of sector map 200 can additionally be stored on
the storage device and/or in memory in numeric order based
on sector identifier, in a binary tree indexed based sector
identifier, and so forth.

In one or more embodiments, the content of sector map
200 is maintained on the storage device in groups of sector
identifiers, each group including a contiguous set or run of
sector identifiers. Each group includes a header identifying
various information about the group, such as the size of the
group (e.g., the number of sectors of the storage device that
are used to store the group, the number of sector identifiers
in the run, etc.), a checksum value for the group, an offset
into the storage volume (or memory) to access the first sector
identifier and sector signature in the group, and so forth.
These groups can then be readily mapped into a sector map
in memory when the computing device starts operation (e.g.,
is powered on, reset, etc.). It should be noted that in such
embodiments sector map 200 need not include an identifier
of each sector identifier, but rather just an indication of the
first sector identifier in the run of sector identifiers and the
sector signatures corresponding to the sector identifiers in
the run. The sector signature corresponding to a particular
sector in the run can thus be readily given the size of the
sector signatures.

Returning to FIG. 1, sector map 108 includes identifiers
and corresponding signatures of sectors that were written to
prior to sector map 108 being locked. After sector map 108
is locked, data written to storage volume 110 is encrypted by
encryption/decryption control module 102. Such data can
include data written to sectors of storage volume 110 not
previously written to, as well as data written to sectors of
storage volume 110 that were previously written to (over-
writing sectors). However, data written to storage volume
110 prior to sector map 108 being locked is not encrypted.
Accordingly, after sector map 108 is locked, sector map 108
is used to determine whether the sector was written to before
sector map 108 was locked (and thus is not encrypted), or
whether the sector was written to after sector map 108 was
locked (and thus is encrypted).

25

35

40

45

55

8

After sector map 108 is locked, when data is requested to
be read from a sector of storage volume 110, a check is made
(e.g., by read/write control module 104 or policy module
106) as to whether the sector is identified in sector map 108.
If the sector is not identified in sector map 108, then the data
written to the sector was written after sector map 108 was
locked, and thus the content of the sector is encrypted.
Accordingly, read/write control module 104 invokes encryp-
tion/decryption control module 102 to decrypt the content of
the sector prior to returning the content of the sector to the
requester.

However, if the sector is identified in sector map 108, then
a check is made (e.g., by read/write control module 104 or
policy module 106) as to whether the signature of the current
content of the sector matches the signature of the sector in
sector map 108. If the two signatures match, then the data
written to the sector was written before sector map 108 was
locked, and thus the content of the sector is not encrypted.
Accordingly, read/write control module 104 can return the
content of the sector to the requester and need not invoke
encryption/decryption control module 102 to decrypt the
content of the sector. However, if the two signatures do not
match, then the data written to the sector was written after
sector map 108 was locked, and thus the content of the sector
is encrypted. Accordingly, read/write control module 104
invokes encryption/decryption control module 102 to
decrypt the content of the sector prior to returning the
content of the sector to the requester.

In one or more embodiments, read/write control module
104 also maintains a bitmap corresponding to storage vol-
ume 110, each bit in the bitmap corresponding to a sector of
storage volume 110. If a particular sector of volume 110 is
written to after sector map 108 is locked (optionally just the
first time the particular sector is written to after sector map
108 is locked), module 104 sets (e.g., to a value of 1) the bit
corresponding to that particular sector. If a sector has not
been written to after sector map 108 was locked then the
corresponding bit is not set (e.g., has a value of 0). When
reading the content of a sector, if the bit in the bitmap
corresponding to the sector is set, module 104 knows that the
sector was written to after sector map 108 was locked.
Accordingly, module 104 invokes encryption/decryption
control module 102 to decrypt the content of the sector prior
to returning the content of the sector to the requester.
However, if the bit in the bitmap corresponding to the sector
is not set, then module 104 proceeds to check whether the
sector is identified in sector map 108 and/or whether signa-
tures match as discussed above. Alternatively, writing data
to a sector of storage volume 110 and updating of the bitmap
(e.g., setting the bit corresponding to the sector to a value of
1) can be performed as an atomic operation, in which case
if the bit in the bitmap corresponding to the sector is not set,
then module 104 can return the content of the sector to the
requester and need not invoke encryption/decryption control
module 102 to decrypt the content of the sector.

This bitmap can also be used to address signature colli-
sions. A signature collision occurs when two different con-
tents of a sector result in the same signature. The bitmap
allows situations in which there is a signature collision to be
resolved because the bit corresponding to a sector is set
when the sector is written to, so module 104 knows that the
sector was written to after sector map 108 was locked. The
bit corresponding to a sector being set indicates that the
sector was written to after sector map 108 was locked
regardless of whether the signature of the current content of
the sector matches the signature of the sector in sector map
108.

US 9,477,614 B2

9

Sector map 108 can be generated and locked at a variety
of different times. In one or more embodiments, sector map
108 is generated and locked as part of installing or initial-
izing an operating system on computing device 100. This
can be done, for example, by a vendor or distributor of
computing device 100 (e.g., before the purchaser of com-
puting device 100 receives computing device 100), by a user
of computing device 100, and so forth. The generation and
locking of sector map 108 can be performed as part of the
process of installing the operating system on computing
device 100, or as part of a separate initialization or setup
process for computing device 100. The operating system is
installed on computing device 100 with data written to
sectors of storage volume 110 without being encrypted by
encryption/decryption control module 102.

In such embodiments, sector map 108 can be generated in
various manners. For example, during installation of the
operating system a record of which sectors of storage
volume 110 are written to can be maintained. The sectors
identified in this record can be identified as sectors in sector
map 108, and corresponding signatures generated and stored
in sector map 108. By way of another example, storage
volume 110 can be scanned to identify which sectors were
written to and which were not, and those sectors that were
written to can be identified as sectors in sector map 108 and
corresponding signatures generated and stored in sector map
108. By way of yet another example, an operating system
can be installed on computing device 100 by copying a
storage volume image to storage volume 110, and this
storage volume image can include sector map 108.

Thus, in such embodiments sector map 108 is generated
and locked when the operating system is installed on com-
puting device 100, with subsequent writes to storage volume
110 being encrypted as discussed above. When a policy is
activated on device 100 indicating that data stored on
storage volume 110 after activation of the policy be
encrypted, computing device 100 is in rapid compliance
with the policy because any data written to storage volume
110 after sector map 108 was locked is encrypted. Comput-
ing device 100 need not wait until all of storage volume 100
is encrypted before being in compliance with the policy.
Policy module 106 can thus rapidly indicate compliance
with the policy despite some sectors of storage volume 110
being unencrypted, because device 100 is already encrypting
data written to storage volume 110 (and thus will be encrypt-
ing data stored on storage volume 110 after activation of the
policy).

As used herein, rapid compliance with a policy refers to
compliance within a threshold amount of time and/or with-
out requiring encrypting of an entire storage volume. This
threshold amount of time is typically a small number (e.g.,
on the order of several seconds) that is not expected to cause
a noticeable delay to the user. Similarly, rapid indication of
compliance with a policy refers to indicating compliance
within such a threshold amount of time and/or without
requiring encrypting of an entire storage volume. It should
be noted that policy module 106 need not intentionally delay
in complying with and/or indicating compliance with a
policy, but that some delay may occur (e.g., while waiting
for device 100 to perform other functions unrelated to
complying with the policy, while locking sector map 108,
while encrypting particular special-purpose files (e.g., pag-
ing files, files used for crash dumps, hibernate files, etc.), and
so forth).

In other embodiments, rather than locking sector map 108
as part of installing or initializing an operating system on
computing device 100, sector map 108 is locked in response

15

20

25

30

40

45

50

10

to activation of a policy on computing device 100. Prior to
locking sector map 108, data is written to sectors of storage
volume 110 without being encrypted by encryption/decryp-
tion control module 102, and data is read from sectors of
storage volume 110 without being decrypted by module 102.
An initial sector map 108 is generated (e.g., as part of
installing or initializing an operating system on computing
device 100 as discussed above). For each write to a sector,
sector map 108 is updated with an identifier of the sector
written to (if not already included in sector map 108) and a
corresponding signature of the content written to that sector.
Thus, in such embodiments sector map 108 is generated over
time, and keeps an ongoing current identification of which
sectors of storage volume 110 have been written to as well
as the signatures of those sectors that have been written to.

In response to a request to activate a policy on computing
device 100 indicating that data stored on storage volume 110
after activation of the policy be encrypted, policy module
106 activates the policy. As part of activating the policy,
sector map 108 is locked, so subsequent writes to storage
volume 110 are encrypted as discussed above. Computing
device 100 is in rapid compliance with the policy because
data written to storage volume 110 after sector map 108 is
locked is encrypted. Computing device 100 need not wait
until all of storage volume 100 is encrypted before being in
compliance with the policy. Policy module 106 can thus
rapidly indicate (e.g., with less than a threshold amount of
delay) compliance with the policy even though some sectors
of storage volume 110 are unencrypted, because subsequent
writes to storage volume 110 will be encrypted, and device
100 thus will be encrypting data stored on storage volume
110 after activation of the policy.

In embodiments in which sector map 108 keeps an
ongoing current identification of which sectors of storage
volume 110 have been written to as well as the signatures of
those sectors that have been written to, sector map 108 can
be maintained in memory (e.g., RAM) and persisted on a
storage device (e.g., storage volume 110). In such embodi-
ments, the sectors in sector map 108 can be grouped
together, with each group being a collection of multiple
sectors of sector map 108. The number of sectors in a group
can vary, and different groups can have different numbers of
sectors. Which sectors are included in which groups can be
determined in different manners. For example, sectors can
be grouped together by sector number in numeric order,
based on hash values of the sector identifiers, and so forth.

FIG. 3 illustrates an example of sector maps maintained
in memory and persisted on a storage device in accordance
with one or more embodiments. FIG. 3 illustrates a storage
volume 300 storing a sector map 302, and a memory 310
storing a sector map 312. Memory 310 is typically a volatile
memory that does not maintain its state when the computing
device including memory 310 is powered off, but that
typically has faster access time than storage volume 300.
Sector maps 302 and 312 are each a version of the same
sector map, which can be sector map 108 of FIG. 1.

As illustrated, sector maps 302 and 312 each include
sectors grouped into multiple groups. Each group includes
multiple sector identifiers and corresponding sector signa-
tures. Additionally, each group has a flag indicating whether
the group is dirty or clean, which is used as discussed below.

When the computing device starts operation (e.g., is
powered on, reset, etc.), sector map 302 is copied from
storage volume 300 into memory 310 as sector map 312. At
this point, the flag value of each group in sector maps 302
and 312 are set to indicate the corresponding groups are
clean (although situations can arise where one or more flag

US 9,477,614 B2

11

values are set to indicate the corresponding groups are dirty,
as discussed below). The group being clean indicates that the
content of the group (sector identifiers and corresponding
sector signatures) on storage volume 300 is the same as the
content of the group in memory 310. When data is subse-
quently written to a sector of the storage volume, sector map
312 is updated with the signature of the newly written
content of that sector. However, sector map 302 is not yet
updated to include the signature of the newly written content
of that sector. Additionally, the flag for the group in sector
map 312 including that sector, as well as the flag for the
group in sector map 302 including that sector, is set to
indicate the group is dirty (if not already set to indicate the
group is dirty). The group being dirty indicates that the
content of the group on storage volume 300 is not the same
as the content of the group in memory 310.

The content of the dirty groups in sector map 312 are
flushed to storage volume 300 at some point. Flushing the
dirty groups to storage volume 300 refers to writing the data
groups from sector map 312 to sector map 302, and setting
the corresponding flags of those written groups in sector
maps 302 and 312 to indicate the corresponding groups are
clean. The particular point at which the dirty groups are
flushed can vary, such as in response to a threshold number
of groups being marked dirty, a threshold amount of time
elapsing since a group was marked as being dirty, during a
time of low storage volume usage (e.g., less than a threshold
number of read and/or write access to storage volume 300 in
a threshold amount of time), and so forth.

When the computing device again starts operation (e.g., is
powered on, reset, etc.), each group of sector map 302 that
is marked as clean is copied from storage volume 300 into
memory 310 as a group of sector map 312. For each group
of sector map 302 that is marked as dirty, the sector
signatures for the identified sectors in that group are gener-
ated based on the contents of those identified sectors. These
generated sector signatures are stored in the group in sector
map 302 as well as in sector map 312, and the groups are
marked as clean in sector maps 302 and 312. Thus, although
situations can arise in which the computing device crashes
or loses power before one or more dirty groups in sector map
312 are flushed to storage volume 300, such situations are
readily resolved when the computing device again starts
operation. The flags in sector map 302 of each of the one or
more dirty groups in sector map 312 that were not flushed to
storage volume 300 still indicate the group is dirty, and thus
the sector signatures are re-generated.

In one or more embodiments, when setting a flag in sector
map 302 and sector map 312 due to a particular write to a
sector, the write to the sector is not finalized until the flags
in maps 302 and 312 are set to indicate the group including
the identifier of that sector is dirty. Accordingly, if the
computing device were to crash or lose power during a
write, the write to the sector would not be finalized before
the flags in maps 302 and 312 are set to indicate the group
is dirty. Thus, due to a crash or loss of power, situations can
arise in which a flag in sector map 302 is set to indicate the
group is dirty, but the data that caused that flag to be set to
indicate the group is dirty was not actually written to storage
volume 300. Such situations are readily resolved because
when the computing device again starts operation the flag in
sector map 302 is set to indicate that the group is dirty, so
the sector signatures of the sectors identified in that group
are re-generated. Thus, sector maps 302 and 312 maintain an
accurate signature for the sector.

Returning to FIG. 1, in one or more embodiments, in
response to activating a policy on computing device 100

10

15

20

25

30

35

40

45

50

55

60

65

12

indicating that data stored on storage volume 110 after
activation of the policy be encrypted, policy module 106
begins the process of encrypting the unencrypted data in
sectors of storage volume 110. Which sectors have unen-
crypted data can be readily identified (e.g., based on sector
map 108, based on a bitmap corresponding to storage
volume 110 as discussed above, etc.). This can be per-
formed, for example, by requesting that the unencrypted
data from a sector be read and then written back to the sector.
As the request to write the data back to the sector is received
after the policy is activated, the data written back is
encrypted. When no unencrypted data remains on storage
volume 110, use of sector map 108 can cease—sector map
108 can be deleted and/or ignored because the data that was
written to storage volume 110 before sector map 108 was
locked has been re-written as encrypted data.

When performing such a process of encrypting the unen-
crypted data in sectors of storage volume 110, a record of
which sectors have been encrypted can be maintained in
different manners. For example, after unencrypted data from
a sector is read and written back to the storage volume as
encrypted data, the sector identifier and corresponding sec-
tor signature for that sector can be removed from sector map
108 (effectively unlocking sector map 108 for removal of the
sector identifier and corresponding sector signature). By
way of another example, after unencrypted data from a
sector is read and written back to the storage volume as
encrypted data, a bit in a bitmap (which corresponds to
storage volume 110 as discussed above) that corresponds to
that sector can be set.

Policy module 106 can perform this process of encrypting
the unencrypted data in sectors of storage volume 110 in
different manners. For example, policy module 106 can
monitor computing device 100 for, and perform the process
during, times of low storage volume usage (e.g., less than a
threshold number of read and/or write access to storage
volume 110 in a threshold amount of time). By way of
another example, policy module 106 can monitor computing
device 100 for, and perform the process during, times when
computing device 100 is not typically being used (e.g.,
between midnight and 4:00 am). By way of yet another
example, policy module 106 can monitor computing device
100 for, and perform the process during, times when com-
puting device 100 is plugged in (e.g., operating on AC power
rather than on battery power).

FIG. 4 is a block diagram illustrating another example
computing device 400 implementing rapid compliance with
a data encryption policy in accordance with one or more
embodiments. Computing device 400 can be a variety of
different types of devices, such as a physical device or a
virtual device, analogous to computing device 100 of FIG.
1.

Computing device 400 includes an encryption/decryption
control module 102, a read/write control module 104, a
policy module 106, and a storage volume 110, analogous to
computing device 100 of FIG. 1. However, rather than a
sector map, computing device 400 includes an encrypted
chunks map 402 and a conversion log 404.

In embodiments using encrypted chunks map 402,
encrypted chunks map 402 groups sectors of storage volume
110 together into chunks. Each chunk is a collection of
multiple sectors of storage volume 110. The number of
sectors in a chunk can vary, and different chunks can have
different numbers of sectors. Which sectors are included in
which chunks can be determined in different manners. For
example, sectors can be grouped together by sector number
in numeric order. Encrypted chunks map 402 identifies

US 9,477,614 B2

13

whether, for each chunk of sectors of storage volume 110,
the sectors included in the chunk are unencrypted or
encrypted (or optionally not in use). If the sectors in the
chunk are unencrypted then the chunk is also referred to as
being unencrypted. Similarly, if the sectors in the chunk are
encrypted (or not in use), then the chunk is also referred to
as being encrypted (or not in use).

Encrypted chunks map 402 is typically a bitmap. For
example, encrypted chunks map 402 can include multiple
bits, each bit corresponding to a chunk of sectors of storage
volume 110, and each bit being set (e.g., to a value of 1) to
indicate that the sectors in the corresponding chunk are
encrypted (or not in use), or is not set (e.g., have a value of
0) to indicate that the sectors in the corresponding chunk are
unencrypted. Alternatively other maps or records other than
a bitmap can be used.

Discussions herein make reference to indicating whether
a corresponding chunk is encrypted or not in use (e.g., the
bit corresponding to the chunk is set). Alternatively,
encrypted chunks map 402 can indicate whether a corre-
sponding chunk is encrypted without supporting the possi-
bility that the chunk is not in use. For example, the bit
corresponding to the chunk is set to indicate the chunk is
encrypted (and is not set solely because the chunk is not in
use).

Prior to activation of a policy on computing device 400
indicating that data stored on storage volume 110 after
activation of the policy be encrypted, encrypted chunks map
402 need not be used. Data can be written to and read from
storage volume 110 without being encrypted. However, in
response to activation of a policy on computing device 400
indicating that data stored on storage volume 110 after
activation of the policy be encrypted, read/write control
module 104 invokes encryption/decryption control module
102 to have data written to storage volume 110 encrypted.
Read/write control module 104 also uses encrypted chunks
map 402 to determine whether to decrypt data read from
storage volume 110. Computing device 400 is thus in rapid
compliance with the policy because data written to storage
volume 110 after the policy is activated is encrypted. Com-
puting device 400 need not wait until all of storage volume
100 is encrypted before being in compliance with the policy.
Policy module 106 can thus rapidly indicate (e.g., with less
than a threshold amount of delay) compliance with the
policy even though some sectors of storage volume 110 are
unencrypted, because subsequent writes to storage volume
110 will be encrypted, and device 400 thus will be encrypt-
ing data stored on storage volume 110 after activation of the
policy.

In one or more embodiments, multiple versions of
encrypted chunks map 402 are maintained. For example,
two versions (a most recent version and a previous version)
of encrypted chunks map 402 can be maintained. Each
version typically has a version number or other identifier
(e.g., with more recent versions having higher version
numbers than less recent versions). When a change is made
to encrypted chunks map 402, the previous version of
encrypted chunks map 402 is replaced by the most recent
version of encrypted chunks map 402, and then the change
is made to the most recent version of encrypted chunks map
402. Thus, the two versions of encrypted chunks map 402
include a most recent version of encrypted chunks map 402,
and the next most recent version of encrypted chunks map
402.

Additionally, versions of encrypted chunks map 402 can
be can be maintained in memory (e.g., RAM) and persisted
on a storage device (e.g., storage volume 110). In one or

25

40

45

50

14

more embodiments, each time a change is made to a version
of'encrypted chunks map 402, the version in memory as well
as the version persisted on the storage device are updated.
Alternatively, at least part of encrypted chunks map 402 can
be maintained in a nonvolatile memory (e.g., Flash memory)
that maintains its state when computing device 400 is
powered off, in which case versions of at least that part of
encrypted chunks map 402 need not be both maintained in
memory and persisted on a storage device.

After the policy (indicating that data stored on storage
volume 110 after activation of the policy be encrypted) is
activated, when data is requested to be read from a sector of
storage volume 110, encrypted chunks map 402 is checked
(e.g., by read/write control module 104 or policy module
106) to determine whether the chunk including the sector
being read from is unencrypted (e.g., the bit corresponding
to the chunk including the sector is not set). If the chunk is
unencrypted, then read/write control module 104 reads the
sector and returns the content of the sector to the requester.
However, if the chunk has been encrypted or is not in use
(e.g., the bit corresponding to the chunk including the sector
is set), then read/write control module 104 invokes encryp-
tion/decryption control module 102 to decrypt the content of
the sector, and returns the decrypted content of the sector to
the requester.

After the policy (indicating that data stored on storage
volume 110 after activation of the policy be encrypted) is
activated, when data is requested to be written to a sector of
storage volume 110, encrypted chunks map 402 is checked
(e.g., by read/write control module 104 or policy module
106) to determine whether the chunk including the sector
being written to is unencrypted (e.g., the bit corresponding
to the chunk including the sector is not set). If the chunk is
not unencrypted (the sectors in the chunk have already been
encrypted or are not in use), then read/write control module
104 invokes encryption/decryption control module 102 to
encrypt the content of the sector, and writes the encrypted
content of the sector to storage volume 110.

However, if the chunk is unencrypted, then read/write
control module 104 holds the write request to allow the other
sectors in the chunk that includes the sector being written to
be encrypted. Module 104 reads the content of the sectors in
the chunk (e.g., all the sectors in the chunk, or those sectors
in the chunk other than the sector to which data is requested
to be written). Module 104 invokes encryption/decryption
control module 102 to encrypt each of the sectors that is
read, and writes the encrypted content of each of those
sectors to storage volume 110.

Module 104 also maintains a record of the sectors that
were encrypted in conversion log 404. Conversion log 404
includes identifiers of the sectors that were encrypted and
signatures of the sectors, analogous to the sector identifiers
and sector signatures of sector map 108 discussed above.
However, the signatures in conversion log 404 are typically
signatures of the sectors storing encrypted content. Conver-
sion log 404 is maintained in memory (e.g., RAM) and
persisted on a storage device (e.g., storage volume 110),
analogous to versions of encrypted chunks map 402. Alter-
natively, conversion log 404 can be maintained in a non-
volatile memory (e.g., Flash memory) that maintains its state
when computing device 400 is powered off, in which case
conversion log 404 need not be both maintained in memory
and persisted on a storage device. Additionally, multiple
versions of conversion log 404 can be maintained, analo-
gous to encrypted chunks map 402 versions.

After the encrypted content of the sectors is written to
storage volume 110 and conversion log 404 (in memory and

US 9,477,614 B2

15

persisted on the storage device) is updated, encrypted
chunks map 402 is changed to reflect that the chunk that
includes the data being written to has been encrypted. For
example, the bit corresponding to the chunk that includes the
sector being written to is set. Read/write control module 104
then ceases holding the write request, and re-processes the
write request. The chunk that includes the sector being
written to is no longer unencrypted, and thus read/write
control module 104 invokes encryption/decryption control
module 102 to encrypt the content of the sector, and writes
the encrypted content of the sector to storage volume 110 as
discussed above. It should be noted that various changes to
this ordering can be made. For example, the data being
written can be encrypted prior to the write request being
held.

Alternatively, rather than re-processing the write request,
module 104 can read the content of the sectors in the chunk,
replace the sector being written to with the content being
written as part of the write request, and write the encrypted
content of the sectors of the chunk to storage volume 110.
Thus, the write request is effectively incorporated into the
reading, encrypting, and writing of the chunk.

In one or more embodiments, in response to activating a
policy on computing device 400 indicating that data stored
on storage volume 110 after activation of the policy be
encrypted, policy module 106 begins a process of identify-
ing chunks of sectors of storage volume 110 that are not in
use. Whether a particular sector of storage volume 110 is in
use can be determined in different manners, such as by
obtaining an indication from an operating system of com-
puting device 400 as to which sectors are in use and which
sectors are not in use. In response to detecting a chunk for
which all sectors in the chunk are not in use, policy module
106 changes encrypted chunks map 402 to indicate that
chunk is encrypted or not in use (e.g., a bit corresponding to
that chunk is set). Thus, encrypted chunks map 402 can
initially indicate that all chunks are unencrypted, and then
have chunks marked as encrypted or not in use as those
chunks are encrypted or identified as not in use.

Policy module 106 can perform this process of identifying
chunks that are not in use in different manners. For example,
policy module 106 can monitor computing device 400 for,
and perform the process during, times of low storage volume
usage (e.g., less than a threshold number of read and/or write
access to storage volume 110 in a threshold amount of time).
By way of another example, policy module 106 can monitor
computing device 400 for, and perform the process during,
times when computing device 400 is not typically being
used (e.g., between midnight and 4:00 am). By way of yet
another example, policy module 106 can monitor computing
device 400 for, and perform the process during, times when
computing device 400 is plugged in (e.g., operating on AC
power rather than on battery power).

Similarly, in one or more embodiments policy module 106
can begin a process of encrypting the unencrypted data in
sectors of storage volume 110. Policy module 106 can begin
encrypting the unencrypted data in sectors of storage volume
110 at different times, such as after the process of identifying
chunks of sectors of storage volume 110 that are not in use
has been completed, in response to activating a policy on
computing device 400 indicating that data stored on storage
volume 110 after activation of the policy be encrypted, and
so forth. Which sectors have unencrypted data can be readily
identified (e.g., the sectors included in chunks having cor-
responding bits in encrypted chunks map 402 that are not
set, other records or logs maintained by policy module 106
and/or an operating system of computing device 400). The

10

15

20

25

30

35

40

45

50

55

60

65

16

encrypting of unencrypted data in sectors of storage volume
110 can be performed, for example, by requesting that the
unencrypted data from sectors in a chunk be read and then
written back to those sectors. As the request to write the data
back to the sectors is received after the policy is activated,
the data written back is encrypted. Once the encrypted
sectors of a chunk are written back, encrypted chunks map
402 is changed to reflect that the chunk is no longer
unencrypted (e.g., the bit corresponding to the chunk is set).

When no unencrypted data remains on storage volume
110, use of encrypted chunks map 402 can cease, and
encrypted chunks map 402 can be deleted and/or ignored.
The data that was written to storage volume 110 before
encrypted chunks map 402 was used has been re-written as
encrypted data, and data written to storage volume 110 using
encrypted chunks map 402 is encrypted. Read/write control
module 104 can simply invoke encryption/decryption con-
trol module 102 to encrypt data being written and decrypt
data being read without using encrypted chunks map 402.

When performing such a process of encrypting the unen-
crypted data in sectors of storage volume 110, a record of
which sectors have been encrypted can be maintained in
different manners. For example, a separate log or record of
which sectors have been encrypted can be maintained by
policy module 106. By way of another example, after
unencrypted data from sectors in a chunk is read and written
back to the storage volume as encrypted data, a bit in
encrypted chunks map 402 corresponding to the chunk can
be set.

Policy module 106 can perform this process of encrypting
unencrypted sectors in different manners. For example,
policy module 106 can monitor computing device 400 for,
and perform the process during, times of low storage volume
usage (e.g., less than a threshold number of read and/or write
access to storage volume 110 in a threshold amount of time).
By way of another example, policy module 106 can monitor
computing device 400 for, and perform the process during,
times when computing device 400 is not typically being
used (e.g., between midnight and 4:00 am). By way of yet
another example, policy module 106 can monitor computing
device 400 for, and perform the process during, times when
computing device 400 is plugged in (e.g., operating on AC
power rather than on battery power).

Although a single encrypted chunks map 402 is illustrated
in computing device 400, alternatively multiple encrypted
chunks maps 402 can be included (each having multiple
versions as discussed above). These different encrypted
chunks maps 402 can correspond to different parts of storage
volume 110. These different parts can be determined in
different manners, such as particular collections of sectors of
storage volume 110 having a particular size (e.g., collections
of sectors totaling 2-4 Gigabytes). Each of these different
encrypted chunks maps is used as discussed above, and
which of the multiple encrypted chunks maps is used is
dependent on the particular sector or sectors being read from
or written to for a particular request.

Situations can arise in which computing device 400
crashes or loses power during a write, such as when data is
being written to storage volume 110, when a conversion log
or encrypted chunks map is being persisted, and so forth. To
resolve such situations, when computing device 400 boots
(e.g., due to being restarted, reset, etc.) read/write control
module 104 retrieves the most recent valid version of
encrypted chunks map 402 persisted on storage volume 110.
Whether a particular version of encrypted chunks map 402
is valid can be determined in different manners (e.g., based
on a checksum or other value stored with the encrypted

US 9,477,614 B2

17

chunks map 4020 on storage volume 110). Read/write
control module 104 also retrieves the most recent valid
version of conversion log 404 persisted on storage volume
110. Whether a particular version of conversion log 404 is
valid can be determined in different manners (e.g., based on
a checksum or other value stored with the conversion log
404 on storage volume 110).

Conversion log 404 includes an indication of the most
recently encrypted sector (or chunk). For the most recently
encrypted sector (or chunk), if encrypted chunks map 402
indicates that the chunk that includes the most recently
encrypted sector (or the most recently encrypted chunk) is
not unencrypted (e.g., the bit corresponding to the chunk is
set), then no recovery need be performed. However, if
encrypted chunks map 402 indicates that the chunk that
includes the most recently encrypted sector (or the most
recently encrypted chunk) is unencrypted (e.g., the bit
corresponding to the chunk is not set), then recovery may be
performed. What recovery is to be performed can be deter-
mined in different manners, such as based on signatures of
the sectors (e.g., which sectors in the chunk have been
encrypted can be determined based on the signatures—if the
signature of the sector in conversion log 404 matches (e.g.,
is the same as) the signature of the sector on storage volume
110 then the sector has been encrypted, and if the signatures
do not match then the sector has not been encrypted).
Sectors in the chunk that have not been encrypted are
encrypted, and the bit in the encrypted chunks map 402
corresponding to the chunk is set. One or more other
operating system modules supporting recovery can option-
ally be invoked to perform the recovery.

Signatures of encrypted sectors are discussed above as
stored in conversion log 404. Alternatively, the signatures in
conversion log 404 can be signatures of unencrypted sectors.
In such situations, a sector can be decrypted and the signa-
ture of the unencrypted content of the sector generated. If the
signature of the unencrypted content of the sector matches
(e.g., is the same as) the signature of the sector in conversion
log 404 then the sector has been encrypted, and if the
signatures do not match then the sector has not been
encrypted.

FIG. 5 is a flowchart illustrating an example process 500
for implementing rapid compliance with a data encryption
policy in accordance with one or more embodiments. Pro-
cess 500 is carried out by a computing device, such as
computing device 100 of FIG. 1, and can be implemented in
software, firmware, hardware, or combinations thereof. Pro-
cess 500 is shown as a set of acts and is not limited to the
order shown for performing the operations of the various
acts. Process 500 is an example process for implementing
rapid compliance with a data encryption policy; additional
discussions of implementing rapid compliance with a data
encryption policy are included herein with reference to
different figures.

In process 500, a request to activate a policy for a
computing device is received (act 502). The policy indicates
that data written by the computing device to a storage
volume after activation of the policy be encrypted. The
request can be received from various sources, such as user
of the computing device, a service being accessed by the
computing device, an administrator of a network to which
the computing device is coupled, and so forth.

The policy is activated for the computing device in
response to the request (act 504). By activating the policy,
data written to the storage volume after returning the indi-

10

15

20

25

30

35

40

45

50

55

60

65

18

cation of compliance with the policy is encrypted, despite
one or more sectors of the storage volume being unen-
crypted (plaintext).

An indication of compliance with the policy is also
returned in response to the request (act 506). This indication
can be returned immediately as a rapid indication of com-
pliance, and can be returned despite one or more sectors of
the storage volume being unencrypted (plaintext).

FIG. 6 is a flowchart illustrating an example process 600
for implementing rapid compliance with a data encryption
policy using a sector map in accordance with one or more
embodiments. Process 600 is carried out by a computing
device, such as computing device 100 of FIG. 1, and can be
implemented in software, firmware, hardware, or combina-
tions thereof. Process 600 is shown as a set of acts and is not
limited to the order shown for performing the operations of
the various acts. Process 600 is an example process for
implementing rapid compliance with a data encryption
policy using a sector map; additional discussions of imple-
menting rapid compliance with a data encryption policy
using a sector map are included herein with reference to
different figures.

In process 600, a sector map identifying one or more
sectors of a storage volume is accessed (act 602). The sector
map is accessed to comply with a policy indicating that data
written by the computing device to the storage volume after
activation of the policy be encrypted. The sector map is
typically accessed from volatile memory as discussed above,
and can be copied into volatile memory from the storage
volume as appropriate.

After activation of the policy, a request to read the content
of a sector of the storage volume is received (act 604). In
response to the request, a check is made as to whether the
sector is identified in the sector map (act 606).

If the sector is identified in the sector map, then a check
is made as to whether the signature of the content of the
sector matches the signature for that sector as identified in
the sector map (act 608). If the signature of the content of the
sector matches the signature for that sector as identified in
the sector map, then the content of the sector is returned
without decrypting the content (act 610). The content is
returned to a requester from which the request to read the
content was received, such as another program or applica-
tion running on the computing device.

However, if the signature of the content of the sector does
not match the signature for that sector as identified in the
sector map in act 608, or if the sector is not identified in the
sector map in act 606, then the content of the sector is
decrypted (act 612), and the decrypted content is returned
(act 614). The content is returned to a requester from which
the request to read the content was received, such as another
program or application running on the computing device.

Alternatively, a bitmap with bits indicating whether cor-
responding sectors have been written to after the sector map
was locked can be used as discussed above. When using
such a bitmap, an additional act prior to act 606 is included
in process 600, the additional act being checking whether the
bitmap indicates that the sector has been written to after the
sector map was locked. If the bitmap indicates that the sector
has been written to after the sector map was locked, then the
content of the sector is decrypted (act 612) and returned (act
614). However, if the bitmap indicates that the sector has not
been written to after the sector map was locked, then process
600 proceeds to act 606.

FIG. 7 is a flowchart illustrating an example process for
implementing rapid compliance with a data encryption
policy using an encrypted chunks map in accordance with

US 9,477,614 B2

19

one or more embodiments. Process 700 is carried out by a
computing device, such as computing device 100 of FIG. 1,
and can be implemented in software, firmware, hardware, or
combinations thereof. Process 700 is shown as a set of acts
and is not limited to the order shown for performing the
operations of the various acts. Process 700 is an example
process for implementing rapid compliance with a data
encryption policy using an encrypted chunks map; addi-
tional discussions of implementing rapid compliance with a
data encryption policy using an encrypted chunks map are
included herein with reference to different figures.

In process 700, an encrypted chunks map identifying one
or more chunks of sectors of a storage volume is accessed
(act 702). The encrypted chunks map is accessed to comply
with a policy indicating that data written by the computing
device to the storage volume after activation of the policy be
encrypted.

A chunk that includes a sector to which data is requested
to be written is identified (act 704). Which sectors are
included in which chunks can be determined in different
manners, as discussed above.

A determination is made as to whether the chunk is
unencrypted (act 706). This determination is made based on
the encrypted chunks map as discussed above. For example,
if a bit in the encrypted chunks map corresponding to the
chunk is not set then the chunk is unencrypted, and if the bit
in the encrypted chunks map corresponding to the chunk is
set then the chunk is encrypted (or not in use).

If the chunk is not unencrypted, then the data to be written
to the sector is encrypted (act 708), and the encrypted data
is written to the sector of the storage volume (act 710).

However, if the chunk is unencrypted, then the write
request is placed on hold (act 712). Placing the write request
on hold allows the sectors in the chunk that includes the
sector to which data is requested to be written to be
encrypted.

The sectors in the chunk that includes the sector to which
data is requested to be written are encrypted (act 714). All
sectors included in the chunk can be encrypted, or alterna-
tively sectors in the chunk other than the sector to which data
is requested to be written can be encrypted as discussed
above.

The encrypted chunks map is updated in memory and the
updated map is persisted on the storage volume (act 716).
The update to the encrypted chunks map is a change to the
encrypted chunks map to reflect that the chunk including the
sectors that were encrypted in act 714 is no longer unen-
crypted as discussed above. Multiple versions of the
encrypted chunks map can also be maintained as discussed
above.

The hold on the write request ceases (act 718), and
process 700 returns to act 706 to again check whether the
chunk is unencrypted. As the chunk is no longer unen-
crypted, process 700 proceeds to acts 708 and 710 as
discussed above. Alternatively, process 700 can return to act
708 rather than act 706.

The rapid compliance with data encryption policy tech-
niques discussed herein support various usage scenarios,
allowing a rapid indication to be provided of compliance
with a policy indicating that data written to a storage volume
after activation of the policy be encrypted despite one or
more sectors of the storage volume being unencrypted. For
example, the sector map can be used to identify which
sectors were written to prior to the sector map being locked.
This sector map can be locked when an operating system is
installed or initialized on the computing device, or alterna-
tively in response to the request to comply with the policy.

10

15

20

25

30

35

40

45

50

55

60

65

20

Regardless of when the sector map is locked, after being
locked data written to the storage volume is encrypted, and
the sector map can be used to determine whether to decrypt
or not decrypt data based on when the data was written to the
storage volume. By way of another example, the encrypted
chunks map can be used to identify which chunks of sectors
are unencrypted after application of the policy to the com-
puting device. Data written to sectors after activation of the
policy is encrypted, and the encrypted chunks map can be
used to determine whether to decrypt or not decrypt data
based on whether the chunk that includes the sector from
which data is read is unencrypted.

Various actions such as receiving, returning, recording,
storing, generating, obtaining, and so forth performed by
various modules are discussed herein. A particular module
discussed herein as performing an action includes that
particular module itself performing the action, or alterna-
tively that particular module invoking or otherwise access-
ing another component or module that performs the action
(or performs the action in conjunction with that particular
module). Thus, a particular module performing an action
includes that particular module itself performing the action
and/or another module invoked or otherwise accessed by
that particular module performing the action.

FIG. 8 illustrates an example computing device 800 that
can be configured to implement rapid compliance with a
data encryption policy in accordance with one or more
embodiments. Computing device 800 can be, for example,
computing device 100 of FIG. 1.

Computing device 800 includes one or more processors or
processing units 802, one or more computer readable media
804 which can include one or more memory and/or storage
components 806, one or more input/output (I/O) devices
808, and a bus 810 that allows the various components and
devices to communicate with one another. Computer read-
able media 804 and/or one or more I/O devices 808 can be
included as part of, or alternatively may be coupled to,
computing device 800. Processor 802, computer readable
media 804, one or more of devices 808, and/or bus 810 can
optionally be implemented as a single component or chip
(e.g., a system on a chip). Bus 810 represents one or more
of several types of bus structures, including a memory bus
or memory controller, a peripheral bus, an accelerated
graphics port, a processor or local bus, and so forth using a
variety of different bus architectures. Bus 810 can include
wired and/or wireless buses.

Memory/storage component 806 represents one or more
computer storage media. Component 806 can include vola-
tile media (such as random access memory (RAM)) and/or
nonvolatile media (such as read only memory (ROM), Flash
memory, optical disks, magnetic disks, and so forth). Com-
ponent 806 can include fixed media (e.g., RAM, ROM, a
fixed hard drive, etc.) as well as removable media (e.g., a
Flash memory drive, a removable hard drive, an optical disk,
and so forth).

The techniques discussed herein can be implemented in
software, with instructions being executed by one or more
processing units 802. It is to be appreciated that different
instructions can be stored in different components of com-
puting device 800, such as in a processing unit 802, in
various cache memories of a processing unit 802, in other
cache memories of device 800 (not shown), on other com-
puter readable media, and so forth. Additionally, it is to be
appreciated that the location where instructions are stored in
computing device 800 can change over time.

One or more input/output devices 808 allow a user to
enter commands and information to computing device 800,

US 9,477,614 B2

21

and also allows information to be presented to the user
and/or other components or devices. Examples of input
devices include a keyboard, a cursor control device (e.g., a
mouse), a microphone, a scanner, and so forth. Examples of
output devices include a display device (e.g., a monitor or
projector), speakers, a printer, a network card, and so forth.

Various techniques may be described herein in the general
context of software or program modules. Generally, soft-
ware includes routines, programs, applications, objects,
components, data structures, and so forth that perform
particular tasks or implement particular abstract data types.
An implementation of these modules and techniques may be
stored on or transmitted across some form of computer
readable media. Computer readable media can be any avail-
able medium or media that can be accessed by a computing
device. By way of example, and not limitation, computer
readable media may comprise “computer storage media”
and “communication media.”

“Computer storage media” include volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information such
as computer readable instructions, data structures, program
modules, or other data. Computer storage media include, but
are not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can be accessed by a com-
puter. Computer storage media refer to media for storage of
information in contrast to mere signal transmission, carrier
waves, or signals per se. Thus, computer storage media
refers to non-signal bearing media, and is not communica-
tion media.

“Communication media” typically embody computer
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as carrier wave
or other transport mechanism. Communication media also
include any information delivery media. The term “modu-
lated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, communication media include wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, RF, infrared, and other wireless
media. Combinations of any of the above are also included
within the scope of computer readable media.

Generally, any of the functions or techniques described
herein can be implemented using software, firmware, hard-
ware (e.g., fixed logic circuitry), manual processing, or a
combination of these implementations. The terms “module”
and “component” as used herein generally represent soft-
ware, firmware, hardware, or combinations thereof. In the
case of a software implementation, the module or compo-
nent represents program code that performs specified tasks
when executed on a processor (e.g., CPU or CPUs). The
program code can be stored in one or more computer
readable memory devices, further description of which may
be found with reference to FIG. 8. In the case of hardware
implementation, the module or component represents a
functional block or other hardware that performs specified
tasks. For example, in a hardware implementation the mod-
ule or component can be an application-specific integrated
circuit (ASIC), field-programmable gate array (FPGA),
complex programmable logic device (CPLD), and so forth.
The features of the rapid compliance with data encryption
policy techniques described herein are platform-indepen-

10

15

20

25

30

35

40

45

50

55

60

65

22

dent, meaning that the techniques can be implemented on a
variety of commercial computing platforms having a variety
of processors.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed is:

1. A method comprising:

receiving, by a computing device, a request to activate a

policy for the computing device, the policy indicating
that data written by the computing device to a storage
volume after activation of the policy be encrypted;
activating, in response to the request, the policy for the
computing device, including:
encrypting data written to the storage volume after
returning an indication of compliance with the
policy,
using a sector map to identify one or more sectors of the
storage volume that are not encrypted, the sector
map identifying one or more sectors of the storage
volume written to prior to the sector map being
locked to prohibit changes to the sector map and the
sector map including signatures of sectors that were
written to the storage volume prior to the sector map
being locked, data written to the storage volume after
the sector map is locked being encrypted but at least
some data written to the storage volume before the
sector map is locked not being encrypted, and
using the sector map to determine whether to decrypt
content of a sector of the storage volume in response
to a request to read the content of the sector; and
returning, in response to the request to activate the policy,
the indication of compliance with the policy despite
one or more sectors of the storage volume being
unencrypted.

2. A method as recited in claim 1, the returning compris-
ing returning the response without waiting for the storage
volume to be encrypted.

3. A method as recited in claim 1, the activating further
comprising returning, in response to the request to read the
content, the content without decrypting the content in
response to the sector being one of the one or more sectors
written to prior to the sector map being locked and the
signature of the content of the sector matching the signature
of the sector identified in the sector map, and otherwise
decrypting the content of the sector and returning the
decrypted content.

4. A method as recited in claim 1, the activating further
comprising:

checking a bit corresponding to the sector, the bit being

one of multiple bits in a bitmap corresponding to the
storage volume, each of the multiple bits indicating
whether a corresponding sector of the storage volume
has been written to after the sector map was locked to
prohibit changes to the sector map;

decrypting the content of the sector and returning the

decrypted content in response to the bit corresponding
to the sector indicating the sector has been written to
after the sector map was locked; and

in response to the bit corresponding to the sector indicat-

ing the sector has not been written to after the sector
map was locked, returning the content without decrypt-
ing the content in response to the sector being one of

US 9,477,614 B2

23

the one or more sectors written to prior to the sector
map being locked and the signature of the content of the
sector matching the signature of the sector identified in
the sector map, and otherwise decrypting the content of
the sector and returning the decrypted content.

5. A method as recited in claim 1, the sector map being
locked in response to the request to activate the policy for
the computing device.

6. A method as recited in claim 5, further comprising,
prior to the sector map being locked:

maintaining a first version of the sector map on the storage

volume;

maintaining a second version of the sector map in volatile

memory;

grouping the sector identifiers and sector signatures into

multiple groups, each group including sector signatures
for one or more sectors;

updating, in response to data being written to a sector

identified in a group, a flag value of the group to
indicate that the group is dirty; and

copying the groups that are indicated as dirty from the

second version of the sector map to the first version of
the sector map in response to a threshold number of the
multiple groups being indicated as dirty.

7. A method as recited in claim 1, further comprising
maintaining the sector map on the storage volume, and
mapping the sector map from the storage volume into a
sector map in volatile memory when the computing device
starts operation.

8. A method as recited in claim 1, further comprising:

encrypting unencrypted data from sectors of the storage

volume;

determining when no unencrypted data remains on the

storage volume; and

deleting the sector map and ceasing using the sector map

in response to no unencrypted data remaining on the
storage volume.

9. A method as recited in claim 8, further comprising
removing, from the sector map, an identifier and correspond-
ing signature of a sector in response to unencrypted data
from the sector being encrypted.

10. A method as recited in claim 1, the signature of the
content of the sector comprising a value generated as a
function of the content of the sector.

11. A method as recited in claim 1, the storage volume
being included as part of the computing device.

12. A computing device comprising:

one or more hardware processors; and

one or more computer storage media devices having

stored thereon multiple instructions that, when
executed by the one or more processors to comply with
a policy for the computing device, cause the one or
more processors to:
access a sector map identifying one or more sectors of
a storage volume written to prior to changes to the
sector map being locked to prohibit changes to the
sector map, the sector map further identifying, for
each of the one or more sectors, a signature of the
content of the sector, the policy indicating that data
written by the computing device to the storage
volume after activation of the policy be encrypted;
in response to a request to read the content of a sector
of the storage volume:
read the content of the sector from the storage
volume and return the content of the sector of the
storage volume without decrypting the content in
response to both the sector not having been written

5

10

15

20

25

30

35

40

45

50

55

60

65

24

to after the sector map was locked to prohibit
changes to the sector map and the signature of the
content of the sector matching the signature of the
sector identified in the sector map; and

read the content of the sector from the storage
volume, decrypt the content of the sector of the
storage volume, and return the decrypted content
in response to the sector having been written to
after the sector map was locked to prohibit
changes to the sector map.

13. A computing device as recited in claim 12, the sector
map being locked in response to a request to activate the
policy for the computing device.

14. A computing device as recited in claim 13, the
multiple instructions further causing the one or more pro-
cessors to, prior to the sector map being locked:

maintain a first version of the sector map on the storage

volume;

maintain a second version of the sector map in volatile

memory;

group the sector identifiers and sector signatures into

multiple groups, each group including sector signatures
for one or more sectors;

update, in response to data being written to a sector

identified in a group, a flag value of the group to
indicate that the group is dirty; and

copy the groups that are indicated as dirty from the second

version of the sector map to the first version of the
sector map in response to a threshold number of the
multiple groups being indicated as dirty.

15. A computing device as recited in claim 12, the
multiple instructions further causing the one or more pro-
cessors to:

encrypt unencrypted data from sectors of the storage

volume;

determine when no unencrypted data remains on the

storage volume; and

delete the sector map and ceasing using the sector map in

response to no unencrypted data remaining on the
storage volume.

16. A computing device as recited in claim 15, the
multiple instructions further causing the one or more pro-
cessors to remove, from the sector map, an identifier and
corresponding signature of a sector in response to unen-
crypted data from the sector being encrypted.

17. A method, implemented in a computing device, to
comply with a policy for the computing device, the method
comprising:

accessing a sector map identifying one or more sectors of

a storage volume written to prior to changes to the
sector map being locked to prohibit changes to the
sector map, the sector map further identifying, for each
of the one or more sectors, a signature of the content of
the sector, the policy indicating that data written by the
computing device to the storage volume after activation
of the policy be encrypted;

in response to a request to read the content of a sector of

the storage volume:

reading the content of the sector from the storage
volume and returning the content of the sector of the
storage volume without decrypting the content in
response to both the sector not having been written
to after the sector map was locked to prohibit
changes to the sector map and the signature of the
content of the sector matching the signature of the
sector identified in the sector map; and

US 9,477,614 B2

25

reading the content of the sector from the storage
volume, decrypting the content of the sector of the
storage volume, and returning the decrypted content
in response to the sector having been written to after
the sector map was locked to prohibit changes to the
sector map.

18. A method as recited in claim 17, further comprising
locking the sector map in response to a request to activate
the policy for the computing device.

19. A method as recited in claim 18, further comprising,
prior to the sector map being locked:

maintaining a first version of the sector map on the storage

volume;

maintaining a second version of the sector map in volatile

memory;

grouping the sector identifiers and sector signatures into

multiple groups, each group including sector signatures
for one or more sectors;

updating, in response to data being written to a sector

identified in a group, a flag value of the group to
indicate that the group is dirty; and

copying the groups that are indicated as dirty from the

second version of the sector map to the first version of
the sector map in response to a threshold number of the
multiple groups being indicated as dirty.

20. A method as recited in claim 17, further comprising:

encrypting unencrypted data from sectors of the storage

volume;

determining when no unencrypted data remains on the

storage volume; and

deleting the sector map and ceasing using the sector map

in response to no unencrypted data remaining on the
storage volume.

21. The method as recited in claim 17, further comprising
encrypting data written by the computing device to at least
one sector of the storage volume regardless of whether the
sector of the storage volume is one of the one or more
sectors.

22. A computing device comprising:

one or more hardware processors; and

one or more computer storage media devices having

stored thereon multiple instructions that, when
executed by the one or more processors to comply with
a policy for the computing device, cause the one or
more processors to:

10

15

20

25

35

40

26

receive a request to activate a policy for the computing
device, the policy indicating that data written by the
computing device to a storage volume after activa-
tion of the policy be encrypted;

activate, in response to the request, the policy for the

computing device, including:

encrypting data written to the storage volume after
returning an indication of compliance with the
policy,

using a sector map to identify one or more sectors of
the storage volume that are not encrypted, the
sector map identifying one or more sectors of the
storage volume written to prior to the sector map
being locked to prohibit changes to the sector map
and the sector map including signatures of sectors
that were written to the storage volume prior to the
sector map being locked, data written to the stor-
age volume after the sector map is locked being
encrypted but at least some data written to the
storage volume before the sector map is locked not
being encrypted, and

using the sector map to determine whether to decrypt
content of a sector of the storage volume in
response to a request to read the content of the
sector; and

return, in response to the request to activate the policy, the
indication of compliance with the policy despite one or
more sectors of the storage volume being unencrypted.

23. The computing device as recited in claim 22, the
sector map being locked in response to the request to
activate the policy for the computing device.

24. The computing device as recited in claim 22, the
multiple instructions further causing the one or more pro-
cessors to:

encrypt unencrypted data from sectors of the storage
volume;

determine when no unencrypted data remains on the
storage volume; and

delete the sector map and cease using the sector map in
response to no unencrypted data remaining on the
storage volume.

